ASIC Mining Vs GPU Mining : Which one is Best Right Now?

Am I understanding this technology right?

So I first heard about FPGAs from Linus Tech Tips. I've been doing some research and I still don't fully understand how these things work. The way I figure it right now is you program whatever instruction set you want into it and then it runs code for that instruction set. Is this correct?
I've seen posts about people using them for gaming and even bitcoin mining. Makes sense for mining, I guess kinda like a virtual ASIC. How does it work with gaming though? Virtual GPU? Virtual CPU cores perhaps?
My main interest in them is simulations development. I got simulations that take a long time to compute. Can I just take one of these, stick it in a PCIe slot, create a custom instruction set for my purposes, and then run bytecode on it? If so, how much faster should I expect it to run compared to running equivalent C++ code on a plain ol' CPU? Assuming an average-quality instruction set considering I'd clearly be a noob at this.
Thanks for reading!
submitted by ScandicMinecraft to FPGA [link] [comments]

A Software Engineer's Explanation of Server Ticks/FPS, the Message Pump, and Server Meshing

Since people liked my last post about the SQ42 report, I thought I would do another about the recent comment about server ticks https://robertsspaceindustries.com/spectrum/community/SC/forum/50259/thread/end-goal-server-tick-rate/2872293
To understand how this works, you must first understand the Message Pump. This is basically the heart beat of an application. It is a loop from which there is no escape, so long as the application runs. All applications have an "entry point" that initially gets called. If you've ever taken Computer Science 101, it would be your "main" function. For a console application, you enter main, it does some things, and then when it leaves main, the application closes. In an application with a graphical user interface, that loop has to regularly call a Render or Draw function that draws the UI. This happens on the Render Thread. In a regular client application your Message Pump will look something like this:
while(IsApplicationRunning) { //loop while application is meant to run HandleKeyboardInputs(); //check to see if any keyboard events have occured HandleMouseInputs(); //check to see if any mouse events have occurred, hittest children HandleSizeChanges(); //check if the window has resized, resize children to fit Render(); //recursively render all child controls } 
Each function call within the loop will call entire hierarchies of functionality. This same basic principal applies to a server as well. I am using my imagination, as I have never audited the Star Citizen codebase, but its message pump would look something like
while(IsServerOnline) { //loop while server is meant to run HandleOrbitalRotation(); //update position of all planets around the sun HandleNPCRoutines(); //update position/animations of all NPCs SynchronizePlayerLocations(); //receive player location packets and update //internal locations CheckForIssues(); //check all object positions and ensure no conflicts UpdatePlayerLocations(); //send new location data of all objects to connected //players } 
This is only the most basic sort of functionality, that doesn't factor in things like Server Object Container Streaming or Meshing or object persistence.
Each iteration of the Message Pump is a frame. These frames are calculated by having a Stopwatch and taking averages of how long it takes each frame to complete across a defined sample size. If you have a target frame rate, like 30fps for instance, subroutines can be prioritized to try to either run on the current frame, or be skipped, based on how much load is put on the servers.
My current understanding, based on Star Citizen's published material, is that there is presently one server for every 50 players, and that server handles an entire star system. Having one server for every 50 players right now is fine, and that number can hopefully be increased as optimizations happen within the code.
The important part is modifying the server code so that they can separate different Object Containers to separate physical server hardware. This would allow them to, for instance, have one server, with its own message pump, handle Port Olisar, for up to 50 players. For v0 of server meshing, I would imagine that, when the 51st player comes to PO, they would have to spin up a new server for that person of PO, and they would be on their own. When the player count goes back below 50, that server can go back to sleep and is available to be repurposed for whatever other area needs it, dynamically. As players leave PO, and go into space, each part of space could have dedicated servers for that area. The same goes for planets, or cities. Each would be its own Object Container, each Object Container could contain smaller Object Containers, so that as players move around, servers would seamlessly spin up or down to host content for the players. Technically, one server could even host multiple separate Object Containers if they both have low player counts.
This would go a very long way towards making the universe feel full and connected. To start out with, you might still only find a maximum of 50 people on Daymar, but you might also find 50 people on Yela, or ArcCorp. Each place could be full, with the game client switching servers when going to different areas. Server Object Container Streaming is what enables this. It is just a matter of handling the trade off between servers, and keeping everything synchronized. I recognize that the posts that CIG makes on the subject are often hard to understand for laymen, but these posts make me feel confident that they are making progress and heading in a meaningful direction toward the end goal of having us seamlessly switch between servers on the fly.
One thing that I have no heard anything about is the transition towards specialized physical hardware for handling some of these large-scale server-side operations. If they are using regular CPU/GPU operations, performance could be *vastly* improved by creating FPGAs or ASICs that could perform calculations with greater alacrity than a GPU could ever hope to. This is the type of hardware used in medical devices, data centers, or bitcoin mining.
I wrote this up purely to help people understand some aspects of software engineer, and no part of it is meant to be so specific that you should interpret it to be exactly how something works. I am trying to provide a high level, easy to understand, idea of some very complex concepts.
If there is any other part of development that you would like me to comment on feel free to @ me with VerdantNonsense :) Stay safe out there.
submitted by VerdantNonsense to starcitizen [link] [comments]

What is Cryptocurrency Mining?

There are various ways of gaining cryptocurrencies and one major way is through cryptocurrency mining. So, Cryptofactsbc will help you understand what is cryptocurrency Mining and how to mine these cryptos. There is nothing to worry about because we will give you everything you need to know about cryptocurrency mining and suggest some steps to follow if you want to mine cryptocurrencies. Let us dig into our topic for the day, What is cryptocurrency Mining?

Understanding Mining

When we take Gold Mining for example miners go into pits to dig for Gold, others use machines one the surface on the lands to detect possible places where Gold will be located.. They find and wash the gold and refine it and get it ready to be sold. That is how Gold mining is done in the real world but when we come to the crypto world it is slightly different. For our fiat currency, the government decides the quantity to be printed and when to print and circulate them because it is centralised.

Cryptocurrency Mining

Cryptocurrency Mining is the process where by verified transactions are added to a ledger which is known as Blockchain. Crypto coins are decentralized therefore no authority or government persons can order for the circulation of cryptos. Mining Cryptocoins is an arms race that rewards early adopters. Anyone can participate in mining provided they have the necessary materials to start.
I am pretty sure you have heard pf Bitcoins, the first decentralised cryptocurrency that was released in early 2009. Similar digital currencies have crept into the world-wide market since then, including a spin-off from Bitcoin called Bitcoin Cash. You can get in on the cryptocurrency rush if you take the time to learn the basics properly.

Methods of Cryptocurrency Mining

There are various ways of mining and we will look a few methods; Cloud Mining Basically these are some of the cryptocurrencies that can be mined, Bitcoin, Ethereum, Ripple, Thether, Bitcoin Cash and others. The main cryptocurrency we will talk about it’s mining is Bitcoin. Cloud Mining is process whereby miners pay money to rent some hardware from a host company. A company owns bitcoin hardware and then gives them out on rent so miners in-turn rent part of these bitcoin hardware and utilize them remotely.

CPU Mining

The use of Central Processing Unit of your computer, which is the brain of your computer was the very first method people adopted for mining bitcoins when bitcoins were first launched in the year 2009. Back then the mining difficulty was very low so just your CPU could help your gain some huge fractions of Bitcoins. But as stuff were advancing the mining difficulty increase and became higher so people started to look for something better and higher than a normal CPU.

GPU Mining

When technology was advancing, Graphics Processing Units were created. They are programmable electronic chip or circuit that helps the computer to solve complex problems. Most Especially for gamer to be to install games with high graphics requirements on the computer. GPU become very popular therefore people began to use them to mine for bitcoins and amazingly the mining power of 1 GPU equals about 30 CPUs. So, in order for you to gain higher fractions of bitcoins as mine you need to upgrade whiles the system also advances.

FPGA Mining

Another invention came into the system to out smart the GPU mining which was the FPGA. It is an integrated circuit that also helps the computer to carry out a set of calculations. It is almost 10- 100 times better and faster than GPU mining.

ASIC Mining

The full meaning of ASIC is Application Specific Integrated Circuit and it was a breed of miner that was introduced in the year 2019. The sole purpose of this ASIC was to mine bitcoins so you can imagine how fast it would be.
submitted by cryptofactsbc to u/cryptofactsbc [link] [comments]

Transcript of discussion between an ASIC designer and several proof-of-work designers from #monero-pow channel on Freenode this morning

[08:07:01] lukminer contains precompiled cn/r math sequences for some blocks: https://lukminer.org/2019/03/09/oh-kay-v4r-here-we-come/
[08:07:11] try that with RandomX :P
[08:09:00] tevador: are you ready for some RandomX feedback? it looks like the CNv4 is slowly stabilizing, hashrate comes down...
[08:09:07] how does it even make sense to precompile it?
[08:09:14] mine 1% faster for 2 minutes?
[08:09:35] naturally we think the entire asic-resistance strategy is doomed to fail :) but that's a high-level thing, who knows. people may think it's great.
[08:09:49] about RandomX: looks like the cache size was chosen to make it GPU-hard
[08:09:56] looking forward to more docs
[08:11:38] after initial skimming, I would think it's possible to make a 10x asic for RandomX. But at least for us, we will only make an ASIC if there is not a total ASIC hostility there in the first place. That's better for the secret miners then.
[08:13:12] What I propose is this: we are working on an Ethash ASIC right now, and once we have that working, we would invite tevador or whoever wants to come to HK/Shenzhen and we walk you guys through how we would make a RandomX ASIC. You can then process this input in any way you like. Something like that.
[08:13:49] unless asics (or other accelerators) re-emerge on XMR faster than expected, it looks like there is a little bit of time before RandomX rollout
[08:14:22] 10x in what measure? $/hash or watt/hash?
[08:14:46] watt/hash
[08:15:19] so you can make 10 times more efficient double precisio FPU?
[08:16:02] like I said let's try to be productive. You are having me here, let's work together!
[08:16:15] continue with RandomX, publish more docs. that's always helpful.
[08:16:37] I'm trying to understand how it's possible at all. Why AMD/Intel are so inefficient at running FP calculations?
[08:18:05] midipoet ([email protected]/web/irccloud.com/x-vszshqqxwybvtsjm) has joined #monero-pow
[08:18:17] hardware development works the other way round. We start with 1) math then 2) optimization priority 3) hw/sw boundary 4) IP selection 5) physical implementation
[08:22:32] This still doesn't explain at which point you get 10x
[08:23:07] Weren't you the ones claiming "We can accelerate ProgPoW by a factor of 3x to 8x." ? I find it hard to believe too.
[08:30:20] sure
[08:30:26] so my idea: first we finish our current chip
[08:30:35] from simulation to silicon :)
[08:30:40] we love this stuff... we do it anyway
[08:30:59] now we have a communication channel, and we don't call each other names immediately anymore: big progress!
[08:31:06] you know, we russians have a saying "it was smooth on paper, but they forgot about ravines"
[08:31:12] So I need a bit more details
[08:31:16] ha ha. good!
[08:31:31] that's why I want to avoid to just make claims
[08:31:34] let's work
[08:31:40] RandomX comes in Sep/Oct, right?
[08:31:45] Maybe
[08:32:20] We need to audit it first
[08:32:31] ok
[08:32:59] we don't make chips to prove sw devs that their assumptions about hardware are wrong. especially not if these guys then promptly hardfork and move to the next wrong assumption :)
[08:33:10] from the outside, this only means that hw & sw are devaluing each other
[08:33:24] neither of us should do this
[08:33:47] we are making chips that can hopefully accelerate more crypto ops in the future
[08:33:52] signing, verifying, proving, etc.
[08:34:02] PoW is just a feature like others
[08:34:18] sech1: is it easy for you to come to Hong Kong? (visa-wise)
[08:34:20] or difficult?
[08:34:33] or are you there sometimes?
[08:34:41] It's kind of far away
[08:35:13] we are looking forward to more RandomX docs. that's the first step.
[08:35:31] I want to avoid that we have some meme "Linzhi says they can accelerate XYZ by factor x" .... "ha ha ha"
[08:35:37] right? we don't want that :)
[08:35:39] doc is almost finished
[08:35:40] What docs do you need? It's described pretty good
[08:35:41] so I better say nothing now
[08:35:50] we focus on our Ethash chip
[08:36:05] then based on that, we are happy to walk interested people through the design and what else it can do
[08:36:22] that's a better approach from my view than making claims that are laughed away (rightfully so, because no silicon...)
[08:36:37] ethash ASIC is basically a glorified memory controller
[08:36:39] sech1: tevador said something more is coming (he just did it again)
[08:37:03] yes, some parts of RandomX are not described well
[08:37:10] like dataset access logic
[08:37:37] RandomX looks like progpow for CPU
[08:37:54] yes
[08:38:03] it is designed to reflect CPU
[08:38:34] so any ASIC for it = CPU in essence
[08:39:04] of course there are still some things in regular CPU that can be thrown away for RandomX
[08:40:20] uncore parts are not used, but those will use very little power
[08:40:37] except for memory controller
[08:41:09] I'm just surprised sometimes, ok? let me ask: have you designed or taped out an asic before? isn't it risky to make assumptions about things that are largely unknown?
[08:41:23] I would worry
[08:41:31] that I get something wrong...
[08:41:44] but I also worry like crazy that CNv4 will blow up, where you guys seem to be relaxed
[08:42:06] I didn't want to bring up anything RandomX because CNv4 is such a nailbiter... :)
[08:42:15] how do you guys know you don't have asics in a week or two?
[08:42:38] we don't have experience with ASIC design, but RandomX is simply designed to exactly fit CPU capabilities, which is the best you can do anyways
[08:43:09] similar as ProgPoW did with GPUs
[08:43:14] some people say they want to do asic-resistance only until the vast majority of coins has been issued
[08:43:21] that's at least reasonable
[08:43:43] yeah but progpow totally will not work as advertised :)
[08:44:08] yeah, I've seen that comment about progpow a few times already
[08:44:11] which is no surprise if you know it's just a random sales story to sell a few more GPUs
[08:44:13] RandomX is not permanent, we are expecting to switch to ASIC friendly in a few years if possible
[08:44:18] yes
[08:44:21] that makes sense
[08:44:40] linzhi-sonia: how so? will it break or will it be asic-able with decent performance gains?
[08:44:41] are you happy with CNv4 so far?
[08:45:10] ah, long story. progpow is a masterpiece of deception, let's not get into it here.
[08:45:21] if you know chip marketing it makes more sense
[08:45:24] linzhi-sonia: So far? lol! a bit early to tell, don't you think?
[08:45:35] the diff is coming down
[08:45:41] first few hours looked scary
[08:45:43] I remain skeptical: I only see ASICs being reasonable if they are already as ubiquitous as smartphones
[08:45:46] yes, so far so good
[08:46:01] we kbew the diff would not come down ubtil affter block 75
[08:46:10] yes
[08:46:22] but first few hours it looks like only 5% hashrate left
[08:46:27] looked
[08:46:29] now it's better
[08:46:51] the next worry is: when will "unexplainable" hashrate come back?
[08:47:00] you hope 2-3 months? more?
[08:47:05] so give it another couple of days. will probably overshoot to the downside, and then rise a bit as miners get updated and return
[08:47:22] 3 months minimum turnaround, yes
[08:47:28] nah
[08:47:36] don't underestimate asicmakers :)
[08:47:54] you guys don't get #1 priority on chip fabs
[08:47:56] 3 months = 90 days. do you know what is happening in those 90 days exactly? I'm pretty sure you don't. same thing as before.
[08:48:13] we don't do any secret chips btw
[08:48:21] 3 months assumes they had a complete design ready to go, and added the last minute change in 1 day
[08:48:24] do you know who is behind the hashrate that is now bricked?
[08:48:27] innosilicon?
[08:48:34] hyc: no no, and no. :)
[08:48:44] hyc: have you designed or taped out a chip before?
[08:48:51] yes, many years ago
[08:49:10] then you should know that 90 days is not a fixed number
[08:49:35] sure, but like I said, other makers have greater demand
[08:49:35] especially not if you can prepare, if you just have to modify something, or you have more programmability in the chip than some people assume
[08:50:07] we are chipmakers, we would never dare to do what you guys are doing with CNv4 :) but maybe that just means you are cooler!
[08:50:07] and yes, programmability makes some aspect of turnaround easier
[08:50:10] all fine
[08:50:10] I hope it works!
[08:50:28] do you know who is behind the hashrate that is now bricked?
[08:50:29] inno?
[08:50:41] we suspect so, but have no evidence
[08:50:44] maybe we can try to find them, but we cannot spend too much time on this
[08:50:53] it's probably not so much of a secret
[08:51:01] why should it be, right?
[08:51:10] devs want this cat-and-mouse game? devs get it...
[08:51:35] there was one leak saying it's innosilicon
[08:51:36] so you think 3 months, ok
[08:51:43] inno is cool
[08:51:46] good team
[08:51:49] IP design house
[08:51:54] in Wuhan
[08:52:06] they send their people to conferences with fake biz cards :)
[08:52:19] pretending to be other companies?
[08:52:26] sure
[08:52:28] ha ha
[08:52:39] so when we see them, we look at whatever card they carry and laugh :)
[08:52:52] they are perfectly suited for secret mining games
[08:52:59] they made at most $6 million in 2 months of mining, so I wonder if it was worth it
[08:53:10] yeah. no way to know
[08:53:15] but it's good that you calculate!
[08:53:24] this is all about cost/benefit
[08:53:25] then you also understand - imagine the value of XMR goes up 5x, 10x
[08:53:34] that whole "asic resistance" thing will come down like a house of cards
[08:53:41] I would imagine they sell immediately
[08:53:53] the investor may fully understand the risk
[08:53:57] the buyer
[08:54:13] it's not healthy, but that's another discussion
[08:54:23] so mid-June
[08:54:27] let's see
[08:54:49] I would be susprised if CNv4 ASICs show up at all
[08:54:56] surprised*
[08:54:56] why?
[08:55:05] is only an economic question
[08:55:12] yeah should be interesting. FPGAs will be near their limits as well
[08:55:16] unless XMR goes up a lot
[08:55:19] no, not *only*. it's also a technology question
[08:55:44] you believe CNv4 is "asic resistant"? which feature?
[08:55:53] it's not
[08:55:59] cnv4 = Rabdomx ?
[08:56:03] no
[08:56:07] cnv4=cryptinight/r
[08:56:11] ah
[08:56:18] CNv4 is the one we have now, I think
[08:56:21] since yesterday
[08:56:30] it's plenty enough resistant for current XMR price
[08:56:45] that may be, yes!
[08:56:55] I look at daily payouts. XMR = ca. 100k USD / day
[08:57:03] it can hold until October, but it's not asic resistant
[08:57:23] well, last 24h only 22,442 USD :)
[08:57:32] I think 80 h/s per watt ASICs are possible for CNv4
[08:57:38] linzhi-sonia where do you produce your chips? TSMC?
[08:57:44] I'm cruious how you would expect to build a randomX ASIC that outperforms ARM cores for efficiency, or Intel cores for raw speed
[08:57:48] curious
[08:58:01] yes, tsmc
[08:58:21] Our team did the world's first bitcoin asic, Avalon
[08:58:25] and upcoming 2nd gen Ryzens (64-core EPYC) will be a blast at RandomX
[08:58:28] designed and manufactured
[08:58:53] still being marketed?
[08:59:03] linzhi-sonia: do you understand what xmr wants to achieve, community-wise?
[08:59:14] Avalon? as part of Canaan Creative, yes I think so.
[08:59:25] there's not much interesting oing on in SHA256
[08:59:29] Inge-: I would think so, but please speak
[08:59:32] hyc: yes
[09:00:28] linzhi-sonia: i am curious to hear your thoughts. I am fairly new to this space myself...
[09:00:51] oh
[09:00:56] we are grandpas, and grandmas
[09:01:36] yet I have no problem understanding why ASICS are currently reviled.
[09:01:48] xmr's main differentiators to, let's say btc, are anonymity and fungibility
[09:01:58] I find the client terribly slow btw
[09:02:21] and I think the asic-forking since last may is wrong, doesn't create value and doesn't help with the project objectives
[09:02:25] which "the client" ?
[09:02:52] Monero GUI client maybe
[09:03:12] MacOS, yes
[09:03:28] What exactly is slow?
[09:03:30] linzhi-sonia: I run my own node, and use the CLI and Monerujo. Have not had issues.
[09:03:49] staying in sync
[09:03:49] linzhi-sonia: decentralization is also a key principle
[09:03:56] one that Bitcoin has failed to maintain
[09:04:39] hmm
[09:05:00] looks fairly decentralized to me. decentralization is the result of 3 goals imo: resilient, trustless, permissionless
[09:05:28] don't ask a hardware maker about physical decentralization. that's too ideological. we focus on logical decentralization.
[09:06:11] physical decentralization is important. with bulk of bitnoin mining centered on Chinese hydroelectric dams
[09:06:19] have you thought about including block data in the PoW?
[09:06:41] yes, of course.
[09:07:39] is that already in an algo?
[09:08:10] hyc: about "centered on chinese hydro" - what is your source? the best paper I know is this: https://coinshares.co.uk/wp-content/uploads/2018/11/Mining-Whitepaper-Final.pdf
[09:09:01] linzhi-sonia: do you mine on your ASICs before you sell them?
[09:09:13] besides testing of course
[09:09:45] that paper puts Chinese btc miners at 60% max
[09:10:05] tevador: I think everybody learned that that is not healthy long-term!
[09:10:16] because it gives the chipmaker a cost advantage over its own customers
[09:10:33] and cost advantage leads to centralization (physical and logical)
[09:10:51] you guys should know who finances progpow and why :)
[09:11:05] but let's not get into this, ha ha. want to keep the channel civilized. right OhGodAGirl ? :)
[09:11:34] tevador: so the answer is no! 100% and definitely no
[09:11:54] that "self-mining" disease was one of the problems we have now with asics, and their bad reputation (rightfully so)
[09:13:08] I plan to write a nice short 2-page paper or so on our chip design process. maybe it's interesting to some people here.
[09:13:15] basically the 5 steps I mentioned before, from math to physical
[09:13:32] linzhi-sonia: the paper you linked puts 48% of bitcoin mining in Sichuan. the total in China is much more than 60%
[09:13:38] need to run it by a few people to fix bugs, will post it here when published
[09:14:06] hyc: ok! I am just sharing the "best" document I know today. it definitely may be wrong and there may be a better one now.
[09:14:18] hyc: if you see some reports, please share
[09:14:51] hey I am really curious about this: where is a PoW algo that puts block data into the PoW?
[09:15:02] the previous paper I read is from here http://hackingdistributed.com/2018/01/15/decentralization-bitcoin-ethereum/
[09:15:38] hyc: you said that already exists? (block data in PoW)
[09:15:45] it would make verification harder
[09:15:49] linzhi-sonia: https://the-eye.eu/public/Books/campdivision.com/PDF/Computers%20General/Privacy/bitcoin/meh/hashimoto.pdf
[09:15:51] but for chips it would be interesting
[09:15:52] we discussed the possibility about a year ago https://www.reddit.com/Monero/comments/8bshrx/what_we_need_to_know_about_proof_of_work_pow/
[09:16:05] oh good links! thanks! need to read...
[09:16:06] I think that paper by dryja was original
[09:17:53] since we have a nice flow - second question I'm very curious about: has anyone thought about in-protocol rewards for other functions?
[09:18:55] we've discussed micropayments for wallets to use remote nodes
[09:18:55] you know there is a lot of work in other coins about STARK provers, zero-knowledge, etc. many of those things very compute intense, or need to be outsourced to a service (zether). For chipmakers, in-protocol rewards create an economic incentive to accelerate those things.
[09:19:50] whenever there is an in-protocol reward, you may get the power of ASICs doing something you actually want to happen
[09:19:52] it would be nice if there was some economic reward for running a fullnode, but no one has come up with much more than that afaik
[09:19:54] instead of fighting them off
[09:20:29] you need to use asics, not fight them. that's an obvious thing to say for an asicmaker...
[09:20:41] in-protocol rewards can be very powerful
[09:20:50] like I said before - unless the ASICs are so useful they're embedded in every smartphone, I dont see them being a positive for decentralization
[09:21:17] if they're a separate product, the average consumer is not going to buy them
[09:21:20] now I was talking about speedup of verifying, signing, proving, etc.
[09:21:23] they won't even know what they are
[09:22:07] if anybody wants to talk about or design in-protocol rewards, please come talk to us
[09:22:08] the average consumer also doesn't use general purpose hardware to secure blockchains either
[09:22:14] not just for PoW, in fact *NOT* for PoW
[09:22:32] it requires sw/hw co-design
[09:23:10] we are in long-term discussions/collaboration over this with Ethereum, Bitcoin Cash. just talk right now.
[09:23:16] this was recently published though suggesting more uptake though I guess https://btcmanager.com/college-students-are-the-second-biggest-miners-of-cryptocurrency/
[09:23:29] I find it pretty hard to believe their numbers
[09:24:03] well
[09:24:09] sorry, original article: https://www.pcmag.com/news/366952/college-kids-are-using-campus-electricity-to-mine-crypto
[09:24:11] just talk, no? rumors
[09:24:18] college students are already more educated than the average consumer
[09:24:29] we are not seeing many such customers anymore
[09:24:30] it's data from cisco monitoring network traffic
[09:24:33] and they're always looking for free money
[09:24:48] of course anyone with "free" electricity is inclined to do it
[09:24:57] but look at the rates, cannot make much money
[09:26:06] Ethereum is a bloated collection of bugs wrapped in a UI. I suppose they need all the help they can get
[09:26:29] Bitcoin Cash ... just another get rich quick scheme
[09:26:38] hmm :)
[09:26:51] I'll give it back to you, ok? ha ha. arrogance comes before the fall...
[09:27:17] maye we should have a little fun with CNv4 mining :)
[09:27:25] ;)
[09:27:38] come on. anyone who has watched their track record... $75M lost in ETH at DAO hack
[09:27:50] every smart contract that comes along is just waiting for another hack
[09:27:58] I just wanted to throw out the "in-protocol reward" thing, maybe someone sees the idea and wants to cowork. maybe not. maybe it's a stupid idea.
[09:29:18] linzhi-sonia: any thoughts on CN-GPU?
[09:29:55] CN-GPU has one positive aspect - it wastes chip area to implement all 18 hash algorithms
[09:30:19] you will always hear roughly the same feedback from me:
[09:30:52] "This algorithm very different, it heavy use floating point operations to hurt FPGAs and general purpose CPUs"
[09:30:56] the problem is, if it's profitable for people to buy ASIC miners and mine, it's always more profitable for the manufacturer to not sell and mine themselves
[09:31:02] "hurt"
[09:31:07] what is the point of this?
[09:31:15] it totally doesn't work
[09:31:24] you are hurting noone, just demonstrating lack of ability to think
[09:31:41] what is better: algo designed for chip, or chip designed for algo?
[09:31:43] fireice does it on daily basis, CN-GPU is a joke
[09:31:53] tevador: that's not really true, especially in a market with such large price fluctuations as cryptocurrency
[09:32:12] it's far less risky to sell miners than mine with them and pray that price doesn't crash for next six months
[09:32:14] I think it's great that crypto has a nice group of asicmakers now, hw & sw will cowork well
[09:32:36] jwinterm yes, that's why they premine them and sell after
[09:32:41] PoW is about being thermodynamically and cryptographically provable
[09:32:45] premining with them is taking on that risk
[09:32:49] not "fork when we think there are asics"
[09:32:51] business is about risk minimization
[09:32:54] that's just fear-driven
[09:33:05] Inge-: that's roughly the feedback
[09:33:24] I'm not saying it hasn't happened, but I think it's not so simple as saying "it always happens"
[09:34:00] jwinterm: it has certainly happened on BTC. and also on XMR.
[09:34:19] ironically, please think about it: these kinds of algos indeed prove the limits of the chips they were designed for. but they don't prove that you cannot implement the same algo differently! cannot!
[09:34:26] Risk minimization is not starting a business at all.
[09:34:34] proof-of-gpu-limit. proof-of-cpu-limit.
[09:34:37] imagine you have a money printing machine, would you sell it?
[09:34:39] proves nothing for an ASIC :)
[09:35:05] linzhi-sonia: thanks. I dont think anyone believes you can't make a more efficient cn-gpu asic than a gpu - but that it would not be orders of magnitude faster...
[09:35:24] ok
[09:35:44] like I say. these algos are, that's really ironic, designed to prove the limitatios of a particular chip in mind of the designer
[09:35:50] exactly the wrong way round :)
[09:36:16] like the cache size in RandomX :)
[09:36:18] beautiful
[09:36:29] someone looked at GPU designs
[09:37:31] linzhi-sonia can you elaborate? Cache size in RandomX was selected to fit CPU cache
[09:37:52] yes
[09:38:03] too large for GPU
[09:38:11] as I said, we are designing the algorithm to exactly fit CPU capabilities, I do not claim an ASIC cannot be more efficient
[09:38:16] ok!
[09:38:29] when will you do the audit?
[09:38:35] will the results be published in a document or so?
[09:38:37] I claim that single-chip ASIC is not viable, though
[09:39:06] you guys are brave, noone disputes that. 3 anti-asic hardforks now!
[09:39:18] 4th one coming
[09:39:31] 3 forks were done not only for this
[09:39:38] they had scheduled updates in the first place
[09:48:10] Monero is the #1 anti-asic fighter
[09:48:25] Monero is #1 for a lot of reasons ;)
[09:48:40] It's the coin with the most hycs.
[09:48:55] mooooo
[09:59:06] sneaky integer overflow, bug squished
[10:38:00] p0nziph0ne ([email protected]/vpn/privateinternetaccess/p0nziph0ne) has joined #monero-pow
[11:10:53] The convo here is wild
[11:12:29] it's like geo-politics at the intersection of software and hardware manufacturing for thermoeconomic value.
[11:13:05] ..and on a Sunday.
[11:15:43] midipoet: hw and sw should work together and stop silly games to devalue each other. to outsiders this is totally not attractive.
[11:16:07] I appreciate the positive energy here to try to listen, learn, understand.
[11:16:10] that's a start
[11:16:48] <-- p0nziph0ne ([email protected]/vpn/privateinternetaccess/p0nziph0ne) has quit (Quit: Leaving)
[11:16:54] we won't do silly mining against xmr "community" wishes, but not because we couldn'd do it, but because it's the wrong direction in the long run, for both sides
[11:18:57] linzhi-sonia: I agree to some extent. Though, in reality, there will always be divergence between social worlds. Not every body has the same vision of the future. Reaching societal consensus on reality tomorrow is not always easy
[11:20:25] absolutely. especially at a time when there is so much profit to be made from divisiveness.
[11:20:37] someone will want to make that profit, for sure
[11:24:32] Yes. Money distorts.
[11:24:47] Or wealth...one of the two
[11:26:35] Too much physical money will distort rays of light passing close to it indeed.
submitted by jwinterm to Monero [link] [comments]

GPU Mining Crash Course - START HERE!

Welcome All to the GPUMining Crash Course!
With the increase in prices in cryptocurrency, a lot of people are getting back into mining and a lot of people are brand new to the concept overall. So, I quickly wrote this crash course to help you understand what to expect and how to successfully mine your first cryptocurrency. This crash course isn't gonna have all of the fluff you'd see in a normal publication. This is just everything you need to know to get up and running on your first cryptocurrency mining rig.

What is cryptocurrency mining?

One of the main things about cryptocurrencies is that they are "decentralized". Sounds great, but WTF does that even mean? Well, the easiest way to explain it is...
You know how if you want to send your friend/family money digitally, you can do so through your bank. Your bank likely takes a transaction fee and in a few days they will transfer the money. Since cryptocurrencies are decentralized, they don't have a bank or organization to fulfill the transfer of money. Instead, they outsource the computing power of their cryptocurrency network to miners (soon to be you). These miners are verifying transactions, securing the blockchain, and powering the cryptocurrency's specific network among other things. As an incentive, the miners collect transaction fees on the transactions that they verify and collect block rewards while new currency is still being introduced into the ecosystem.

What kind of rig should I build?

You can mine cryptocurrencies using your CPU, GPU, FPGA, or ASIC, but this is a GPU Mining subreddit, so I will cater this to GPUs.
For building a great all-around GPU rig, there are two models of GPUs that I'd recommend:
Both of these GPUs have solid hashrates across most mining algorithms and for a decent price! You should be able to find both of these kinds of GPUs used for around $200-$250 each, which is a great price if you know what happened during the last mining craze! ($200 GPUs were out of stock everywhere and people were reselling them for $600+ each)
There are also plenty of great AMD GPUs for mining, but I've worked mostly with Nvidia so that's why both of my recommendations are Nvidia and not AMD.
Other parts to your rig that you'll need are listed below. Most of these can be pieces of crap and are just needed to make the rig actually run, but the one spot you DON'T want to cheap out on is the power supply unit. A decent power supply unit will keep your home from burning down while also keeping your rigs up and running smoothly. Here are my recommendations:

She's built, now what?

Now you need to do a few things. I am a Windows miner, so I will be speaking to Windows here:
  1. Update Windows - Do all of the updates. Just do it.
  2. Update Drivers - Go to the EVGA website and download GeForce experience. It will keep your GPU drivers up to date.
  3. Go to Windows Device Manager and make sure all of your GPUs show up under "Display Adapters". If it is there, but it isn't showing the Name/Model of the GPU as the name, right click it and select "Update Driver". This should fix it.
Assuming you've done all of this, you're ready to download a mining application.

Mining Software

There are tons to choose from! Claymore, Phoenix, EWBF, LolMiner, etc... It can be overwhelming pretty quickly since they all have different algorithm support, speeds, efficiencies, and a whole lot more. On top of that, in order to get them running you need to set up batch files to call the proper exe, point you to the correct pool, and a whole bunch of other stuff that can be confusing to a new user. Not to mention, you will probably need a separate miner, config file, batch file, etc. for each different algorithm that you're interested in mining on.
Instead, I recommend that you download a miner management software that will take care of most of this tedious work for you. There are a few in the sidebar, but the /GPUMining favorite is AIOMiner. It was developed by our very own community member, xixspiderxix with the intention of making mining as easy as possible to do and without any fees. It supports over 100 different algorithms, so you'll be able to mine nearly ANY cryptocurrency you'd like. Just download it from their website and it will take you through a quick tutorial to help you get set up! You can also connect your rig to their website for remote monitoring and control. You've probably seen a few of their posts around this subreddit.
Other Windows mining softwares include:
Note: Many mining softwares have fees built into them. Most are around 1%, but can go as high as 5% or greater! You want a mining software with little or no fees at all so that you get to keep as much cryptocurrency as possible. These fees aren't something you actively pay, the software will automatically take it by mining on the developers behalf for a given amount of time and then switching back to mining on your own behalf. So, please be diligent in the software that you evaluate and make sure it is reputable.

I keep hearing about NiceHash. What is that?

The asshole of the mining industry. Jk, but not really.
NiceHash is a software program that allows you to sell your rig's hashing power to someone on their marketplace. They market themselves as profitable mining, but you're not really mining. You're selling your power in exchange for Bitcoin.
They did a great job telling people that with them, you're always mining the most profitable coin, but that's just not true. Since it is a mining marketplace, they make you mine whatever their most expensive contract is. If their contracts are below market prices, then you're not operating as efficiently and profitably as you could be.
NiceHash also has a sketchy history, which continues to this day. In 2017, they were hacked and lost $65M worth of Bitcoin. No one got paid out for MONTHS and many of their executives conveniently resigned. Their platform is also used to destroy cryptocurrencies. Since people are able to purchase mining power on their platform, people have used their platform to purchase enough mining power to control individual cryptocurrencies and duplicate coins, which increased the malicious user's wealth while completely destroying the integrity of the coin's blockchain. HoriZEN (formerly ZenCash), Ethereum Classic, and many other great cryptocurrencies have been the victim of NiceHash's platform.
For this and many other reasons, we highly recommend that you stay AWAY from Nicehash. We understand that it is extremely easy to use and you get paid in bitcoin, but they are destroying the industry with their greed and lack of motivation to change their platform for the protection of cryptocurrencies.

Concluding Thoughts

This is pretty much everything you need to know to get started. We covered the hardware, setting up the software, which software to use, and AIOMiner's tutorial will get you up to speed on how to actually mine the cryptocurrency that you want better than I can explain it, so I'll leave that part to them.
If you have any questions on this crash course, please leave a comment below where myself and other community members will be able to help you out.
submitted by The_Brutally_Honest to gpumining [link] [comments]

Which is the most important hardware to mine cryptocurrency?

Crypto mining equipment is specifically designed to solve blockchain hash functions at a faster rate than other hardware solutions. Traditional computers are built with a processor known as a Central Processing Unit (CPU), which is designed to compute the functions needed for a standard computer.
Alternatively, mining hardware is built with different, more advance processors. Yet, these aren’t just high-powered computers. Crypto mining equipment is more efficient than typical hardware at solving computational hashes required to successfully mine blockchains.
MINING HARDWARE DETAILS
There are several things to look out for when it comes to purchasing cryptocurrency mining hardware and equipment.[1]
First, these machines must not just be powerful, but energy efficient as well. Since the number one cost in crypto mining is electricity, a good piece of mining equipment must consume less power while still maintaining its high-powered usage. This makes a key factor in crypto mining hardware hashes per second per watt of power, which determines how much power is consumed for a given amount of hash power.
Second, because cryptocurrency mining is done 24/7/365, the equipment used to mine must be able to operate on a continuous basis. This means, equipment is designed for optimal cooling so as to not overheat from continuous use, as well as setting up equipment in a way which will allow for the most optimal cooling. If you are unsure how this can be done it may be best to outsource the installation and hosting of your mining hardware to a third-party provider with the proper tools and resources to service mining equipment.
TYPES OF MINING HARDWARE
There are three types of mining hardware: GPU, FPGA, and ASIC. The type of hardware used is dependent on the blockchain being mined. While ASIC-based hardware may be the most powerful for some blockchains (such as Bitcoin), they are rendered almost useless in other blockchains (such as ZCash) whose hashing algorithm is designed to be resistant to ASIC hardware.
Choosing the correct piece of mining hardware is one of the most important parts of cryptocurrency mining, as the wrong choice could result in a significant loss of potential profits and time.
All in all, it has become clear over the past several years that cryptocurrency mining hardware is necessary for anyone looking to make a profit in mining. Determining which piece of mining equipment is most suitable for your needs is dependent on many factors such as your budget and the blockchain being mined.
submitted by alifkhalil469 to BtcNewz [link] [comments]

Proposal to switch to SHA-3 proof of work

https://github.com/aeonix/aeon/issues/103

I believe now is the right time for Aeon to become ASIC friendly by switching to SHA-3 PoW (the most recent Secure Hashing Algorithm standardized by NIST). Below I'll try to explain why:

There is no such thing as ASIC resistant PoW.

Whether someone creates an ASIC or not is not determined by how technologically difficult it is to do so, but how economically sensible it is to do so; i.e., when a coin gets more adopted and the price rises, ASICs will appear no matter what.
Below is a quote from Bitcoin StackExchange which makes a good point:
It's not really "someone figured out" how to mine on FPGAs or ASICs: an intelligent first year undergraduate could port SHA256 from C to Verilog. It's more that it began to make economic sense. ASICs in particular require a big enough up-front investment that you need economies of scale. – Peter Taylor Nov 9 '17 at 23:27
https://bitcoin.stackexchange.com/questions/62336/why-did-satoshi-design-bitcoin-to-be-mineable-only-on-specialized-hardware-if-t#comment71658_62339
For every supposedly ASIC resistant PoW (scrypt, CryptoNight etc), ASICs have been created at some point when the coin became sufficiently large. An often seen argument is "CryptoNight was good at resisting ASICs because it survived the first 3 years without ASICs being developed", which I disagree. CryptoNight ASICs weren't created for the first 3 years simply because the market was too small; it wasn't worthwhile to develop CryptoNight ASICs.
Currently RandomX is receiving a lot of attention as being (almost) truly ASIC resistant by making PoW even more complex, but from the past experience and from logical reasoning, I have no reason to believe so.

Importance of protocol stability:

As a coin gets more widely adopted (and the price goes up), there will be more participants in the network (users, exchanges, merchants, pools, etc), which makes it more difficult to do hard forks (i.e. to force everyone to upgrade their software). Monero's 6 month fork schedule is already becoming almost unworkable due to the sheer network size, and I think they'll be forced to change this policy rather soon.
Imagine a hypothetical future where one particular crypto coin becomes a globally adopted world currency. That coin cannot do hard forks every so often; maybe once every two years is already too much. Ideally, at some point, the protocol should become absolutely stable and require no more hard forks at all.
With this in mind, I immediately see ASIC resistance being incompatible with this future, because hard forks (PoW changes) are rather frequently needed due to ASICs getting created faster and faster as the coin grows. ASIC resistance cannot be a sane strategy for a winning cryptocurrency.

Importance of switching now:

Going from ASIC resistant to ASIC friendly is such a radical change, and a strong opposition is naturally expected from many of the community members who have been supporting ASIC resistance. A compromise solution suggested by u/smooth_xmr is to adopt CryptonightR which Monero will switch to in the next upcoming hard fork. I think the reasoning is that CN-R is expected to be somewhat better at resisting ASICs and not much more computationally expensive than the previous CN variants (unlike RandomX), so we can wait and see how successful this will be before going full ASIC friendly.
Initially I felt OK with it, but I became unsatisfied after a while of thinking for these reasons:

Arguments for ASIC resistance and their counterarguments:

SHA-3 is the perfect way for Aeon to differentiate itself from Monero.

This change is radical but not stupid. Many people in the Monero community would be curious how things will play out for SHA-3 Aeon. This will surely also attract a lot of attention from the wider crypto community because Aeon will be the first CryptoNote coin that deployed SHA-3. I believe this is a very good opportunity for marketing as well.

Please discuss.
submitted by stoffu to Aeon [link] [comments]

Mining for Profitability - Horizen (formerly ZenCash) Thanks Early GPU Miners

Mining for Profitability - Horizen (formerly ZenCash) Thanks Early GPU Miners
Thank you for inviting Horizen to the GPU mining AMA!
ZEN had a great run of GPU mining that lasted well over a year, and brought lots of value to the early Zclassic miners. It is mined using Equihash protocol, and there have been ASIC miners available for the algorithm since about June of 2018. GPU mining is not really profitable for Horizen at this point in time.
We’ve got a lot of miners in the Horizen community, and many GPU miners also buy ASIC miners. Happy to talk about algorithm changes, security, and any other aspect of mining in the questions below. There are also links to the Horizen website, blog post, etc. below.
So, if I’m not here to ask you to mine, hold, and love ZEN, what can I offer? Notes on some of the lessons I’ve learned about maximizing mining profitability. An update on Horizen - there is life after moving on from GPU mining. As well as answering your questions during the next 7 days.
_____________________________________________________________________________________________________

Mining for Profitability - Horizen (formerly ZenCash) Thanks Early GPU Miners

Author: Rolf Versluis - co-founder of Horizen

In GPU mining, just like in many of the activities involved with Bitcoin and cryptocurrencies, there is both a cycle and a progression. The Bitcoin price cycle is fairly steady, and by creating a personal handbook of actions to take during the cycle, GPU miners can maximize their profitability.
Maximizing profitability isn't the only aspect of GPU mining that is important, of course, but it is helpful to be able to invest in new hardware, and be able to have enough time to spend on building and maintaining the GPU miners. If it was a constant process that also involved losing money, then it wouldn't be as much fun.

Technology Progression

For a given mining algorithm, there is definitely a technology progression. We can look back on the technology that was used to mine Bitcoin and see how it first started off as Central Processing Unit (CPU) mining, then it moved to Graphical Processing Unit (GPU) mining, then Field Programmable Gate Array (FPGA), and then Application Specific Integrated Circuit (ASIC).
Throughout this evolution we have witnessed a variety of unsavory business practices that unfortunately still happen on occasion, like ASIC Miner manufacturers taking pre-orders 6 months in advance, GPU manufacturers creating commercial cards for large farms that are difficult for retail customers to secure and ASIC Miner manufacturers mining on gear for months before making it available for sale.
When a new crypto-currency is created, in many cases a new mining algorithm is created also. This is important, because if an existing algorithm was used, the coin would be open to a 51% attack from day one, and may not even be able to build a valid blockchain.
Because there's such a focus on profitable software, developers for GPU mining applications are usually able to write a mining application fairly rapidly, then iterate it to the limit of current GPU technology. If it looks like a promising new cryptocurrency, FPGA stream developers and ASIC Hardware Developers start working on their designs at the same time.
The people who create the hashing algorithms run by the miners are usually not very familiar with the design capabilities of Hardware manufacturers. Building application-specific semiconductors is an industry that's almost 60 years old now, and FPGA’s have been around for almost 35 years. This is an industry that has very experienced engineers using advanced design and modeling tools.
Promising cryptocurrencies are usually ones that are deploying new technology, or going after a big market, and who have at least a team of talented software developers. In the best case, the project has a full-stack business team involving development, project management, systems administration, marketing, sales, and leadership. This is the type of project that attracts early investment from the market, which will drive the price of the coin up significantly in the first year.
For any cryptocurrency that's a worthwhile investment of time, money, and electricity for the hashing, there will be a ASIC miners developed for it. Instead of fighting this technology progression, GPU miners may be better off recognizing it as inevitable, and taking advantage of the cryptocurrency cycle to maximize GPU mining profitability instead.

Cryptocurrency Price Cycle

For quality crypto projects, in addition to the one-way technology progression of CPU -> GPU -> FPGA -> ASIC, there is an upward price progression. More importantly, there is a cryptocurrency price cycle that oscillates around an overall upgrade price progression. Plotted against time, a cycle with an upward progressions looks like a sine wave with an ever increasing average value, which is what we see so far with the Bitcoin price.

Cryptocurrency price cycle and progression for miners
This means mining promising new cryptocurrencies with GPU miners, holding them as the price rises, and being ready to sell a significant portion in the first year. Just about every cryptocurrency is going to have a sharp price rise at some point, whether through institutional investor interest or by being the target of a pump-and-dump operation. It’s especially likely in the first year, while the supply is low and there is not much trading volume or liquidity on exchanges.
Miners need to operate in the world of government money, as well as cryptocurrency. The people who run mining businesses at some point have to start selling their mining proceeds to pay the bills, and to buy new equipment as the existing equipment becomes obsolete. Working to maximize profitability means more than just mining new cryptocurrencies, it also means learning when to sell and how to manage money.

Managing Cash for Miners

The worst thing that can happen to a business is to run out of cash. When that happens, the business usually shuts down and goes into bankruptcy. Sometimes an investor comes in and picks up the pieces, but at the point the former owners become employees.
There are two sides to managing cash - one is earning it, the other is spending it, and the cryptocurrency price cycle can tell the GPU miner when it is the best time to do certain things. A market top and bottom is easy to recognize in hindsight, and harder to see when in the middle of it. Even if a miner is able to recognize the tops and bottoms, it is difficult to act when there is so much hype and positivity at the top of the cycle, and so much gloom and doom at the bottom.
A decent rule of thumb for the last few cycles appears to be that at the top and bottom of the cycle BTC is 10x as expensive compared to USD as the last cycle. Newer crypto projects tend to have bigger price swings than Bitcoin, and during the rising of the pricing cycle there is the possibility that an altcoin will have a rise to 100x its starting price.
Taking profits from selling altcoins during the rise is important, but so is maintaining a reserve. In order to catch a 100x move, it may be worth the risk to put some of the altcoin on an exchange and set a very high limit order. For the larger cryptocurrencies like Bitcoin it is important to set trailing sell stops on the way up, and to not buy back in for at least a month if a sell stop gets triggered. Being able to read price charts, see support and resistance areas for price, and knowing how to set sell orders are an important part of mining profitability.

Actions to Take During the Cycle

As the cycle starts to rise from the bottom, this is a good time to buy mining hardware - it will be inexpensive. Also to mine and buy altcoins, which are usually the first to see a price rise, and will have larger price increases than Bitcoin.
On the rise of the cycle, this is a good time to see which altcoins are doing well from a project fundamentals standpoint, and which ones look like they are undergoing accumulation from investors.
Halfway through the rise of the cycle is the time to start selling altcoins for the larger project cryptos like Bitcoin. Miners will miss some of the profit at the top of the cycle, but will not run out of cash by doing this. This is also the time to stop buying mining hardware. Don’t worry, you’ll be able to pick up that same hardware used for a fraction of the price at the next bottom.
As the price nears the top of the cycle, sell enough Bitcoin and other cryptocurrencies to meet the following projected costs:
  • Mining electricity costs for the next 12 months
  • Planned investment into new miners for the next cycle
  • Additional funds needed for things like supporting a family or buying a Lambo
  • Taxes on all the capital gains from the sale of cryptocurrencies
It may be worth selling 70-90% of crypto holdings, maintaining a reserve in case there is second upward move caused by government bankruptcies. But selling a large part of the crypto is helpful to maintaining profitability and having enough cash reserves to make it through the bottom part of the next cycle.
As the cycle has peaked and starts to decline, this is a good time to start investing in mining facilities and other infrastructure, brush up on trading skills, count your winnings, and take some vacation.
At the bottom of the cycle, it is time to start buying both used and new mining equipment. The bottom can be hard to recognize.
If you can continue to mine all the way through bottom part of the cryptocurrency pricing cycle, paying with the funds sold near the top, you will have a profitable and enjoyable cryptocurrency mining business. Any cryptocurrency you are able to hold onto will benefit from the price progression in the next higher cycle phase.

An Update on Horizen - formerly ZenCash

The team at Horizen recognizes the important part that GPU miners played in the early success of Zclassic and ZenCash, and there is always a welcoming attitude to any of ZEN miners, past and present. About 1 year after ZenCash launched, ASIC miners became available for the Equihash algorithm. Looking at a chart of mining difficulty over time shows when it was time for GPU miners to move to mining other cryptocurrencies.

Horizen Historical Block Difficulty Graph
Looking at the hashrate chart, it is straightforward to see that ASIC miners were deployed starting June 2018. It appears that there was a jump in mining hashrate in October of 2017. This may have been larger GPU farms switching over to mine Horizen, FPGA’s on the network, or early version of Equihash ASIC miners that were kept private.
The team understands the importance of the cryptocurrency price cycle as it affects the funds from the Horizen treasury and the investments that can be made. 20% of each block mined is sent to the Horizen non-profit foundation for use to improve the project. Just like miners have to manage money, the team has to decide whether to spend funds when the price is high or convert it to another form in preparation for the bottom part of the cycle.
During the rise and upper part of the last price cycle Horizen was working hard to maximize the value of the project through many different ways, including spending on research and development, project management, marketing, business development with exchanges and merchants, and working to create adoption in all the countries of the world.
During the lower half of the cycle Horizen has reduced the team to the essentials, and worked to build a base of users, relationships with investors, exchanges, and merchants, and continue to develop the higher priority software projects. Lower priority software development, going to trade shows, and paying for business partnerships like exchanges and applications have all been completely stopped.
Miners are still a very important part of the Horizen ecosystem, earning 60% of the block reward. 20% goes to node operators, with 20% to the foundation. In the summer of 2018 the consensus algorithm was modified slightly to make it much more difficult for any group of miners to perform a 51% attack on Horizen. This has so far proven effective.
The team is strong, we provide monthly updates on a YouTube live stream on the first Wednesday of each month where all questions asked during the stream are addressed, and our marketing team works to develop awareness of Horizen worldwide. New wallet software was released recently, and it is the foundation application for people to use and manage their ZEN going forward.
Horizen is a Proof of Work cryptocurrency, and there is no plan to change that by the current development team. If there is a security or centralization concern, there may be change to the algorithm, but that appears unlikely at this time, as the hidden chain mining penalty looks like it is effective in stopping 51% attacks.
During 2019 and 2020 the Horizen team plans to release many new software updates:
  • Sidechains modification to main software
  • Sidechain Software Development Kit
  • Governance and Treasury application running on a sidechain
  • Node tracking and payments running on a sidechain
  • Conversion from blockchain to a Proof of Work BlockDAG using Equihash mining algorithm
After these updates are working well, the team will work to transition Horizen over to a governance model where major decisions and the allocation of treasury funds are done through a form of democratic voting. At this point all the software developed by Horizen is expected to be open source.
When the governance is transitioned, the project should be as decentralized as possible. The goal of decentralization is to enable resilience and preventing the capture of the project by regulators, government, criminal organizations, large corporations, or a small group of individuals.
Everyone involved with Horizen can be proud of what we have accomplished together so far. Miners who were there for the early mining and growth of the project played a large part in securing the network, evangelizing to new community members, and helping to create liquidity on new exchanges. Miners are still a very important part of the project and community. Together we can look forward to achieving many new goals in the future.

Here are some links to find out more about Horizen.
Horizen Website – https://horizen.global
Horizen Blog – https://blog.horizen.global
Horizen Reddit - https://www.reddit.com/Horizen/
Horizen Discord – https://discord.gg/SuaMBTb
Horizen Github – https://github.com/ZencashOfficial
Horizen Forum – https://forum.horizen.global/
Horizen Twitter – https://twitter.com/horizenglobal
Horizen Telegram – https://t.me/horizencommunity
Horizen on Bitcointalk – https://bitcointalk.org/index.php?topic=2047435.0
Horizen YouTube Channel – https://www.youtube.com/c/Horizen/
Buy or Sell Horizen
Horizen on CoinMarketCap – https://coinmarketcap.com/currencies/zencash/

About the Author:

Rolf Versluis is Co-Founder and Executive Advisor of the privacy oriented cryptocurrency Horizen. He also operates multiple private cryptocurrency mining facilities with hundreds of operational systems, and has a blog and YouTube channel on crypto mining called Block Operations.
Rolf applies his engineering background as well as management and leadership experience from running a 60 person IT company in Atlanta and as a US Navy nuclear submarine officer operating out of Hawaii to help grow and improve the businesses in which he is involved.
_____________________________________________________________________________________________
Thank you again for the Ask Me Anything - please do. I'll be checking the post and answering questions actively from 28 Feb to 6 Mar 2019 - Rolf
submitted by Blockops to gpumining [link] [comments]

THE END OF ALL ASIC MINERS? - Monero's New Superweapon: "Time Locked Proof of Non-ASIC work challenge reward" algorithms.

I propose the following algorithm to end this War of attrition with ASIC / FPGA manufacturers , hopefully once and for all and save us Precious PoW Tweaks during the upcoming forks.
"A time-locked, Proof of 'Non-ASIC work' Challenge reward algorithm"
Here's an image to help you visualise how the algorithm works (details below):
https://imgur.com/a/9S8dA
Here's why we need it:
ASIC manufacturers mine in Secret to attack our decentralized network. They'll win the war since they'll 'get their investment back' before we brick their ASICs, allowing them to launch never-ending attacks against our decentralization, for eternity.
Quick Overview
This algorithm uses the concept of "time-locked reward challenges".
The algorithm ‘time-locks’ the reward, then issues a ‘non-ASIC’ work challenge during each regular PoW Fork, which distributes mined rewards only to CPU and GPU miners who can pass the challenge and prove they are not ASICS, by maintaining their hashrate during the ASIC downtime.
These Hash-rate challenges after PoW Forks successfully ‘detect’, and ‘Severely Penalize’ anyone Mining with an ASIC/FPGA, even those in Secret.
Proof of Concept: An Actual Demonstration
I'll demonstrate this algorithm in action:
Please see this image to help you Visualise how the algorithm works:
https://imgur.com/a/9S8dA
There is a critical flaw and uniquely identifying feature that exists in absolutely 'ALL ASIC and FPGA miners', even those mining in Secret.
As most of you may know, with the upcoming V7 PoW hardfork,
Instead of just destroying an ASIC with a fork, we can further exploit this to attack the ASIC Manufacturer or Miner by taking back all their mined rewards and giving them to the community
The Special timeframe is PoW Fork + 'N' Days. ('N' being however many days remaining where it would be "impossible" to build and startup a new ASIC/FPGA after the fork.)
To exploit this, the algorithm introduces a period of time called the "Mining Rewards Collection Timeframe" (MRCT), the time period in between regular PoW Hardforks. the grey shaded area in this image
This "Mining Rewards Collection Timeframe" is a time whereby all mining profit rewards are 'time-locked' or held hostage in escrow, on either the mining pool, or on the Actual Blockchain code itself, or Both, depending on where this algorithm is eventually deployed.
The algorithm stores the wallet address a mining reward belongs to, and the maximum hash rate (or maximum value adjusted share rate per day) observed during the "Mining rewards collection timeframe" for that particular wallet address.
This "Mining Rewards Collection Timeframe" can be of any duration as required by the developers; 1,2,3,4,5,6 Months or longer . The longer This Timeframe, the more dangerous it is to ASIC miners. Meaning we don't have to rush with forks.
Since it's time-locked, mined coins/rewards cannot be cashed out until the coming challenge; However, mining pools can still choose to payout smaller miners before that time if they have a 'good stable Non-Asic Hash challenge passing history', or a deposit on file, or at their own risk, so most good miners don't have to wait to cashout rewards!. Big miners on the other hand, won't care! Why? Because the delay doesn't cost them anything. (it's a TINY TINY inconvenience compared to the damage ASICs would do to GPU mining profits. I hope this makes sense)
Now for the Critical ANTI-ASIC Work Challenge.
Time passes and the mining rewards collection timeframe ends with a Hardfork that changes the PoW algorithm slightly,
All ASICS and FPGAs are INSTANTLY destroyed.
At the same time, the mining rewards from that collection timeframe are now ready to be paid out.
Since only the CPU / GPU miners are able to hash normally,
The Algorithm now issues a Hash Rate challenge to determine how much of the coins mined were actually mined by ASIC or FPGA miners.
The challenge is nothing special. Miners just have to leave their miners running normally at maximum speed for the period of the challenge, same as they do everyday!
During this challenge, their "Average Maximum Hash rate during the challenge" is compared to the "Maximum Hash Rate speed" recorded on the blockchain during the Mining Rewards Collection Timeframe.
See the green dotted line in the image
Thus at this point, since ASICs are DEAD, they cannot Hash at the same rate during this challenge period, so any significant difference in hashrate would thus clearly indicate the use of an ASIC or FPGA miner.
Now, we have all the information we need to STRIP ASIC Miners of ALL their gains, and Reward GPU miners instead.
As shown in the earlier image
What if a 1 GPU breaks in a 12 GPU mining farm during the challenge? (Very rare) or for some reason, you can't mine during that period? then the miner can simply rent the GPUs from nicehash for the Challenge. An ASIC miner however, cannot use this strategy (because ASICS are not GPUs, explained further below). Also we can implement a 2nd chance option; the confiscated reward may be frozen for the next Cycle; and the miner may get a 2nd chance to prove the hashrate again, with a % reward penalty.
The Beautiful thing is that If ASIC miners fail the challenge, Everyone gets a Bonus share of the Reward Forefitted by the ASIC miners, So Everyone wants the ASIC miners to fail so they get Free extra money. and thus have a financial reason to support this algorithm.
*There is no escaping it... or is there?
Is it ASIC PROOF? Can you Cheat this algorithm?
I've also tried to see if you can work around this algorithm:
  • Example 1: What if they switched in GPUS to mine for an ASIC during the challenge? Well, that wouldn't work. When the challenge comes, they can either save the rewards mined by the GPUs, or save the rewards mined by the ASICs, One will always be lost and result is the same anyway because you'd only get paid for the Hash rate of the GPU. The ASIC portion of the hash rate will ALWAYS be lost.
  • Example 2: What if they use the GPUs to mine a different coin and have them only hash for the ASIC during the challenge period?
  • Consider the Antminer X3. at 200KH/s, to support just "ONE ASIC", they would need over 200 RX 580 Cards or 100 VEGA cards to pass the challenge... costing well over $60,000 (SIXTY THOUSAND DOLLARS) and if they depreciate at ~ 10~15% a year, they'd lose $6000~$9000 a year. it's not enough to cover your losses,
  • Also, What other coin could you mine? If ASICS are so powerful, there won't be another coin except those running this algorithm. Then, the dev can choose to issue the challenge at the same point as the other coin using the same algorithm, so they lose all rewards from one coin as 1 rig cannot sustain two challenge algorithms at the same time.
  • Example 3: What if they just leave some GPUS on standby to avoid the power costs? Then ASIC's would still be unable to be mass produced anyway. Because for every ASIC Mass produced, you'd need to Mass Produce 200 times the GPUS to support them in their place, and own of all them. practically impossible.
  • Example 4: What if they rented hashing power from Nicehash to fill in during the Challenge period?
  • Yes, but so can we! The beautiful thing about this algorithm, is if we rent the limited hashing power on Nicehash first before them at break even or loss, it doesn't matter, Because, the ASIC miner cannot rent and hash rate and will fail the challenge, and Forefit the ENORMOUS amount of Rewards to the community. Imagine, Mining at such a high rate for months on end , the rewards confiscated and paid to GPU miners will easily offset any of the tiny losses renting hashrate from Nicehash, so ultimately, The ASIC miners lose Everything, and the community (you and me) gets all their money.
  • Also if ASICs Dominate the crypto market, there won't be any GPU to rent, all remaining coins would be mining this algorithm, meaning they would have to save their own hashrate for themselves, not rent it to ASIC miners. otherwise they lose their reward. Brand new users may rent their GPU's but its no where near enough to cover the ASIC hash shortfall in the challenge.
  • Example 5: What if they waited till we exhausted our supply of PoW fork tweaks? That's the beauty of this algorithm!. We don't actually have to tweak the PoW algorithm on a constant basis! We can intentionally leave it the same. So Everyone passes the Challenge, Then when we do detect an asic "trying to Mine their Money Back in secret (as they do now)", We tweak the PoW at the Next Hardfork. Destroying and bankrupting their very first attempt, and we get all their money and rewards, So there's no need to waste a PoW tweak in a pre-emptive strike, because the rewards are Time-Locked to the future. We can lie in wait with a single PoW like a Trap, and eat them alive (literally we get all their rewards after the challenge!). We can maintain this lethal threat to ASIC manufacturers without having to change the PoW at all!
And remember, all this effort is just for ONLY, ONE ASIC. meaning you Can't mass produce it.
So ultimately it wouldn't even make sense to even develop an ASIC, as you'd be far more profitable just mining only with the 200+ GPU's required to cheat the algorithm.
*So in summary, *
  • No ASIC/FPGA miner can escape the challenge. Not even those running in secret.
  • All ASIC miners are guaranteed to suffer a huge (possibly fatal) financial loss, with no prospect of any return on investment. Time locked rewards ensure No secret pre-mining with ASICs is possible. ASICs are destroyed with each challenge, all R&D and manufacturing costs and the electricity bill used to power them is wasted for basically "ZERO returns",
  • …..and lets not forget that all their rewards gets given away to other honest miners like you and Me!. ( LOL!) or potentially the developers of the fork :)
  • As long as the algorithm is active and used by multiple coins, no ASICs will ever exist to mine in secret,
  • We save precious PoW tweak changes, since there's no need for a pre-emptive PoW strike to prevent 'ASIC hit and run' pre-mine scenarios.
  • ASIC manufacturers see that the war is un-winnable and go invest in other things,
So, in theory, The War Ends. (at least for a very good part of the future)
As they say: " Don't build a wall and hide in fear.... Build a wall and launch missiles from behind it against the enemy so they will never dare attack us again."
I would like to point out that time locked reward challenges are already in use by the Olympic games to Strip drug cheats in the past by storing samples and testing them in the future, and it's also in the PPLNS minig pool algorithms to deter pool hopping cheats, and also in the Bitcoin's Lightning network in the form of decrementing time-locks" that 'enforce the transfer of funds' under certain conditions.
Is it beautiful? Will it work? Can it be done? Let's discuss this
submitted by MoneroChan to Monero [link] [comments]

Andreas Antonopoulos gets "Satoshi's Vision" completely wrong and shows his misunderstanding of the system. He thinks 1 cpu 1 vote means 1 user 1 vote, a common mistake from people on the Core side.

In this video at the 6m20s mark Andreas Antonopoulos speaks about Satoshi's vision. He speaks about "1 cpu 1 vote" saying that Satoshi designed the system to be decentralized as possible, but Andreas completely misunderstands the meaning of 1 cpu 1 vote. He is falling into the common trap of conflating 1cpu 1 vote with 1 user 1 vote.
Andreas, haven't you even read nChains paper about POW and Theory of the Firm? A cpu is an economic resource:
One of the little-known aspects of bitcoin is the nature of the proof of work system. There are many people, especially those who support a UASF or PoW change that believe a distributed system should be completed as a mesh. In this, they confuse centralised systems with centrality. The truth of the matter, no matter which proof of work system is implemented, they all follow a maximal growth curve that reflects the nature of the firm as detailed in 1937 by Ronald Coase (1937).
The bitcoin White Paper was very specific. users of the system "vote with their CPU power" [1]. What this means, is that the system was never generated to give one vote per person. It is designed purely around economic incentives individuals with more hash power will have provided more investment into the system. These individuals who invest more in the system gain more say in the system. At the same time, no one or even two individuals can gain complete control of the system. We'll explore the nature of cartels in a separately, but these always fail without government intervention. The reason for cartels failing comes down to the simple incentivisation of the most efficient member. The strongest cartel member always ends up propping up the weakest. This leads to a strategy of defection.
No proof of work-based solution ever allows for a scenario where you have one vote to one person. The anti-sybiling functions of bitcoin and all other related systems based on proof of work or similar derivatives are derived from an investment based strategy. Solutions to the implementation of ASIC based systems are constantly proposed as a methodology of limiting the centralisation of proof of work systems as it is termed. The truth of the matter is that the mining function within any proof of work system naturally aligns to business interests. This leads to corporations running machines within data centres. On the way that democracies and republics have migrated away from small groups of people individually voting for an outcome towards a vote for a party, the transactional costs associated with individual choice naturally leads to corporate solutions. In this, the corporation mirrors a political party.
In this paper, we address the issues of using alternate approval work systems with regards to either incorporating alternate functions in an extension of simply securing the network against the use of proof of work systems to create a one person one vote scenario in place of economic incentivisation. We will demonstrate conclusively that all systems migrate to a state of economic efficiency. The consequence of this is that systems form into groups designed to maximise returns. The effect is that bitcoin is not only incentive compatible but is optimal. No system can efficiently collapse into an order of one vote one individual and remain secure. In the firm-based nature of bitcoin, we demonstrate that the inherent nature of the firm is reflected within mining pools. Multiple aggregation strategies exist. The strategies range from the creation of collective firms where members can easily join or leave (mining pools) through to more standard corporate structures
Proof of Work as it relates to the theory of the firm. that are successful within any proof of work system. The system was determined to be based on one- vote per CPU (Satoshi, 2008) and not one vote per person or one vote per IP address. The reasons for this is simple, there is no methodology available that can solve byzantine consensus on an individual basis. The solution developed within bitcoin solves this economically using investment. The parties signal their intent to remain bound to the protocol through a significant investment. Those parties that follow the protocol are rewarded. The alternative strategy takes us back to the former and failed systems such as e-cash that could not adequately solve Sybil attacks and decentralise the network. Bitcoin manages to maintain the decentralise nature of the network through a requirement that no individual party can ever achieve more than 50% of the network hash rate.
In all proof of work systems, there are requirements to inject a costly signal into the network that is designed as the security control. To many people, they believe that the cryptographic element, namely the hashing process is the security feature of bitcoin. This is a fallacy, it is the economic cost that is relevant to the overall system and not the individual element.
The benefits of a hash function are that they are difficult to solve in the nature of the proof of work algorithm but are easy to verify. This economic asymmetry is one of the key features of bitcoin. Once a user has found a solution, they know it can be quickly broadcast and verified by others. Additionally, the hash algorithm provides a fair distribution system based on the amount of invested hash rate. The distinction from proof of stake solution as has been proposed comes in the requirement to constantly reinvest. A proof of stake system requires a single investment. Once this investment is created, the system is incentivised towards the protection of the earlier investment. This leads to a scenario known as a strategic oligopoly game.
The solution using a proof of work algorithm is the introduction of an ongoing investment. This is different to an oligopoly game in that sunk cost cannot make up for continued investment. In a proof of stake system, prior investment is crystallised allowing continued control with little further investment. Proof of work differs in that it requires continuous investment. More than this, it requires innovation. As with all capitalist systems, they are subject to Schumpeterian dynamical change (Shumpeter, 1994). The system of creative destruction allows for cycles of innovation. Each innovation leads to waves of creation over the destruction of the old order.
This process creates continued growth. Proof of work-based systems continue to grow and continue to update and change. Any incumbent corporation or other entity needs to continue to invest knowing that their continued dominance is not assured. In bitcoin, we have seen innovative leaps as people moved from CPU-based mining into GPU-based systems. This initial innovation altered the software structure associated with the mining process in bitcoin. That change significantly altered the playing field leading to novel techniques associated with FPGAs and later ASICs dedicated to a specific part of the mining process.
The error held by many people is that this move from a CPU-based solution into more costly implementations could have been averted. A consequence of this has been the introduction of alternative proof of work systems into many of the alt-coins
These systems have been implemented without the understanding that it is not the use of ASICs that is an issue. It is that the belief that individual users can individually mine in a mesh system will be able to be implemented as a successful proof of work. In the unlikely event that a specialised algorithm was implemented that could only run once on any one machine CPU, it would still lead to the eventual creation of corporate data centres for mining. In the section above, we showed using Arrow’s theorem how only a single use proof of work system can be effective. If we extend this and look at the Theory of the Firm (Coase, 1937) we note that in a system in Litecoin and Dogecoin for example. A00137:
Proof of Work as it relates to the theory of the firm. of prices, reduction could be carried out without any organisation. One issue against this arises from the cost of information. Interestingly, as we move into a world of increasingly more information, it becomes scarce information that is important. As the amount of information becomes more voluminous, the ability to uncover accurate and timely information becomes scarcer. The ability to specialise in the coordination of the various factors of production and the distribution of information leads towards vertical integration within firms. We see this first voiced in Adam Smith’s (Smith, 1776) postulation on the firm:
Everyone can choose to either seek further information or act on the information that they already have. This information can be in the form of market knowledge, product knowledge, or expertise, but at some point, the individual needs to decide to act. There is a cost to obtaining information. The returns on obtaining more information hit a maximum level and start to decrease at a certain point. The entrepreneur acts as a guiding influence managing the risk associated with incomplete information compared to the risk of not acting but rather waiting to obtain more information.
In the instance of bitcoin mining, the firm can increase in size through the integration of multiple specialist roles. Even given the assumption that any one process can run on but a single CPU, we come to the scenario of high-end datacentre servers. The Intel Xeon Phi 7290f implements 72 Atom CPU Cores. Each core runs two threads. Even taking the control system into account, this leaves 142 processes able to run per system. With four cards per RU this allows for datacentre implementations of 5,964 mining processes to run on a pure CPU-based proof of work implementation. One person can manage a small number of mining server implementations within a home or small business environment. In large data centre-based organisations such as Facebook, a single administrator can run 20,000 servers
The effect of this would be one individual managing 2,840,000 individual CPU-based mining processes. This alone is outside the scaling capabilities of any individual. This can be further enhanced as cost savings through the creation of large data centres, management savings and integrating multiple network and systems administrators is considered. As we start to add additional layers we come to a maximum where it is no longer profitable to grow the firm in size. Right up until that point, the firm will grow.
submitted by cryptorebel to btc [link] [comments]

The Problem with PoW

The Problem with PoW
Miners have always had it rough..
"Frustrated Miners"

The Problem with PoW
(and what is being done to solve it)

Proof of Work (PoW) is one of the most commonly used consensus mechanisms entrusted to secure and validate many of today’s most successful cryptocurrencies, Bitcoin being one. Battle-hardened and having weathered the test of time, Bitcoin has demonstrated the undeniable strength and reliability of the PoW consensus model through sheer market saturation, and of course, its persistency.
In addition to the cost of powerful computing hardware, miners prove that they are benefiting the network by expending energy in the form of electricity, by solving and hashing away complex math problems on their computers, utilizing any suitable tools that they have at their disposal. The mathematics involved in securing proof of work revolve around unique algorithms, each with their own benefits and vulnerabilities, and can require different software/hardware to mine depending on the coin.
Because each block has a unique and entirely random hash, or “puzzle” to solve, the “work” has to be performed for each block individually and the difficulty of the problem can be increased as the speed at which blocks are solved increases.

Hashrates and Hardware Types

While proof of work is an effective means of securing a blockchain, it inherently promotes competition amongst miners seeking higher and higher hashrates due to the rewards earned by the node who wins the right to add the next block. In turn, these higher hash rates benefit the blockchain, providing better security when it’s a result of a well distributed/decentralized network of miners.
When Bitcoin first launched its genesis block, it was mined exclusively by CPUs. Over the years, various programmers and developers have devised newer, faster, and more energy efficient ways to generate higher hashrates; some by perfecting the software end of things, and others, when the incentives are great enough, create expensive specialized hardware such as ASICs (application-specific integrated circuit). With the express purpose of extracting every last bit of hashing power, efficiency being paramount, ASICs are stripped down, bare minimum, hardware representations of a specific coin’s algorithm.
This gives ASICS a massive advantage in terms of raw hashing power and also in terms of energy consumption against CPUs/GPUs, but with significant drawbacks of being very expensive to design/manufacture, translating to a high economic barrier for the casual miner. Due to the fact that they are virtual hardware representations of a single targeted algorithm, this means that if a project decides to fork and change algorithms suddenly, your powerful brand-new ASIC becomes a very expensive paperweight. The high costs in developing and manufacturing ASICs and the associated risks involved, make them unfit for mass adoption at this time.
Somewhere on the high end, in the vast hashrate expanse created between GPU and ASIC, sits the FPGA (field programmable gate array). FPGAs are basically ASICs that make some compromises with efficiency in order to have more flexibility, namely they are reprogrammable and often used in the “field” to test an algorithm before implementing it in an ASIC. As a precursor to the ASIC, FPGAs are somewhat similar to GPUs in their flexibility, but require advanced programming skills and, like ASICs, are expensive and still fairly uncommon.

2 Guys 1 ASIC

One of the issues with proof of work incentivizing the pursuit of higher hashrates is in how the network calculates block reward coinbase payouts and rewards miners based on the work that they have submitted. If a coin generated, say a block a minute, and this is a constant, then what happens if more miners jump on a network and do more work? The network cannot pay out more than 1 block reward per 1 minute, and so a difficulty mechanism is used to maintain balance. The difficulty will scale up and down in response to the overall nethash, so if many miners join the network, or extremely high hashing devices such as ASICs or FPGAs jump on, the network will respond accordingly, using the difficulty mechanism to make the problems harder, effectively giving an edge to hardware that can solve them faster, balancing the network. This not only maintains the block a minute reward but it has the added side-effect of energy requirements that scale up with network adoption.
Imagine, for example, if one miner gets on a network all alone with a CPU doing 50 MH/s and is getting all 100 coins that can possibly be paid out in a day. Then, if another miner jumps on the network with the same CPU, each miner would receive 50 coins in a day instead of 100 since they are splitting the required work evenly, despite the fact that the net electrical output has doubled along with the work. Electricity costs miner’s money and is a factor in driving up coin price along with adoption, and since more people are now mining, the coin is less centralized. Now let’s say a large corporation has found it profitable to manufacture an ASIC for this coin, knowing they will make their money back mining it or selling the units to professionals. They join the network doing 900 MH/s and will be pulling in 90 coins a day, while the two guys with their CPUs each get 5 now. Those two guys aren’t very happy, but the corporation is. Not only does this negatively affect the miners, it compromises the security of the entire network by centralizing the coin supply and hashrate, opening the doors to double spends and 51% attacks from potential malicious actors. Uncertainty of motives and questionable validity in a distributed ledger do not mix.
When technology advances in a field, it is usually applauded and welcomed with open arms, but in the world of crypto things can work quite differently. One of the glaring flaws in the current model and the advent of specialized hardware is that it’s never ending. Suppose the two men from the rather extreme example above took out a loan to get themselves that ASIC they heard about that can get them 90 coins a day? When they join the other ASIC on the network, the difficulty adjusts to keep daily payouts consistent at 100, and they will each receive only 33 coins instead of 90 since the reward is now being split three ways. Now what happens if a better ASIC is released by that corporation? Hopefully, those two guys were able to pay off their loans and sell their old ASICs before they became obsolete.
This system, as it stands now, only perpetuates a never ending hashrate arms race in which the weapons of choice are usually a combination of efficiency, economics, profitability and in some cases control.

Implications of Centralization

This brings us to another big concern with expensive specialized hardware: the risk of centralization. Because they are so expensive and inaccessible to the casual miner, ASICs and FPGAs predominantly remain limited to a select few. Centralization occurs when one small group or a single entity controls the vast majority hash power and, as a result, coin supply and is able to exert its influence to manipulate the market or in some cases, the network itself (usually the case of dishonest nodes or bad actors).
This is entirely antithetical of what cryptocurrency was born of, and since its inception many concerted efforts have been made to avoid centralization at all costs. An entity in control of a centralized coin would have the power to manipulate the price, and having a centralized hashrate would enable them to affect network usability, reliability, and even perform double spends leading to the demise of a coin, among other things.
The world of crypto is a strange new place, with rapidly growing advancements across many fields, economies, and boarders, leaving plenty of room for improvement; while it may feel like a never-ending game of catch up, there are many talented developers and programmers working around the clock to bring us all more sustainable solutions.

The Rise of FPGAs

With the recent implementation of the commonly used coding language C++, and due to their overall flexibility, FPGAs are becoming somewhat more common, especially in larger farms and in industrial setting; but they still remain primarily out of the hands of most mining enthusiasts and almost unheard of to the average hobby miner. Things appear to be changing though, one example of which I’ll discuss below, and it is thought by some, that soon we will see a day when mining with a CPU or GPU just won’t cut it any longer, and the market will be dominated by FPGAs and specialized ASICs, bringing with them efficiency gains for proof of work, while also carelessly leading us all towards the next round of spending.
A perfect real-world example of the effect specialized hardware has had on the crypto-community was recently discovered involving a fairly new project called VerusCoin and a fairly new, relatively more economically accessible FPGA. The FPGA is designed to target specific alt-coins whose algo’s do not require RAM overhead. It was discovered the company had released a new algorithm, kept secret from the public, which could effectively mine Verus at 20x the speed of GPUs, which were the next fastest hardware types mining on the Verus network.
Unfortunately this was done with a deliberately secret approach, calling the Verus algorithm “Algo1” and encouraging owners of the FPGA to never speak of the algorithm in public channels, admonishing a user when they did let the cat out of the bag. The problem with this business model is that it is parasitic in nature. In an ecosystem where advancements can benefit the entire crypto community, this sort of secret mining approach also does not support the philosophies set forth by the Bitcoin or subsequent open source and decentralization movements.
Although this was not done in the spirit of open source, it does hint to an important step in hardware innovation where we could see more efficient specialized systems within reach of the casual miner. The FPGA requires unique sets of data called a bitstream in order to be able to recognize each individual coin’s algorithm and mine them. Because it’s reprogrammable, with the support of a strong development team creating such bitstreams, the miner doesn’t end up with a brick if an algorithm changes.

All is not lost thanks to.. um.. Technology?

Shortly after discovering FPGAs on the network, the Verus developers quickly designed, tested, and implemented a new, much more complex and improved algorithm via a fork that enabled Verus to transition smoothly from VerusHash 1.0 to VerusHash 2.0 at block 310,000. Since the fork, VerusHash 2.0 has demonstrated doing exactly what it was designed for- equalizing hardware performance relative to the device being used while enabling CPUs (the most widely available “ASICs”) to mine side by side with GPUs, at a profit and it appears this will also apply to other specialized hardware. This is something no other project has been able to do until now. Rather than pursue the folly of so many other projects before it- attempting to be “ASIC proof”, Verus effectively achieved and presents to the world an entirely new model of “hardware homogeny”. As the late, great, Bruce Lee once said- “Don’t get set into one form, adapt it and build your own, and let it grow, be like water.”
In the design of VerusHash 2.0, Verus has shown it doesn’t resist progress like so many other new algorithms try to do, it embraces change and adapts to it in the way that water becomes whatever vessel it inhabits. This new approach- an industry first- could very well become an industry standard and in doing so, would usher in a new age for proof of work based coins. VerusHash 2.0 has the potential to correct the single largest design flaw in the proof of work consensus mechanism- the ever expanding monetary and energy requirements that have plagued PoW based projects since the inception of the consensus mechanism. Verus also solves another major issue of coin and net hash centralization by enabling legitimate CPU mining, offering greater coin and hashrate distribution.
Digging a bit deeper it turns out the Verus development team are no rookies. The lead developer Michael F Toutonghi has spent decades in the field programming and is a former Vice President and Technical Fellow at Microsoft, recognized founder and architect of Microsoft's .Net platform, ex-Technical Fellow of Microsoft's advertising platform, ex-CTO, Parallels Corporation, and an experienced distributed computing and machine learning architect. The project he helped create employs and makes use of a diverse myriad of technologies and security features to form one of the most advanced and secure cryptocurrency to date. A brief description of what makes VerusCoin special quoted from a community member-
"Verus has a unique and new consensus algorithm called Proof of Power which is a 50% PoW/50% PoS algorithm that solves theoretical weaknesses in other PoS systems (Nothing at Stake problem for example) and is provably immune to 51% hash attacks. With this, Verus uses the new hash algorithm, VerusHash 2.0. VerusHash 2.0 is designed to better equalize mining across all hardware platforms, while favoring the latest CPUs over older types, which is also one defense against the centralizing potential of botnets. Unlike past efforts to equalize hardware hash-rates across different hardware types, VerusHash 2.0 explicitly enables CPUs to gain even more power relative to GPUs and FPGAs, enabling the most decentralizing hardware, CPUs (due to their virtually complete market penetration), to stay relevant as miners for the indefinite future. As for anonymity, Verus is not a "forced private", allowing for both transparent and shielded (private) transactions...and private messages as well"

If other projects can learn from this and adopt a similar approach or continue to innovate with new ideas, it could mean an end to all the doom and gloom predictions that CPU and GPU mining are dead, offering a much needed reprieve and an alternative to miners who have been faced with the difficult decision of either pulling the plug and shutting down shop or breaking down their rigs to sell off parts and buy new, more expensive hardware…and in so doing present an overall unprecedented level of decentralization not yet seen in cryptocurrency.
Technological advancements led us to the world of secure digital currencies and the progress being made with hardware efficiencies is indisputably beneficial to us all. ASICs and FPGAs aren’t inherently bad, and there are ways in which they could be made more affordable and available for mass distribution. More than anything, it is important that we work together as communities to find solutions that can benefit us all for the long term.

In an ever changing world where it may be easy to lose sight of the real accomplishments that brought us to this point one thing is certain, cryptocurrency is here to stay and the projects that are doing something to solve the current problems in the proof of work consensus mechanism will be the ones that lead us toward our collective vision of a better world- not just for the world of crypto but for each and every one of us.
submitted by Godballz to CryptoCurrency [link] [comments]

Transcript of Open Developer Meeting in Discord - 7/19/2019

[Dev-Happy] BlondfrogsLast Friday at 3:58 PM
Hey everyone. The channel is now open for the dev meeting.
LSJI07 - MBITLast Friday at 3:58 PM
Hi
TronLast Friday at 3:59 PM
Hi all!
JerozLast Friday at 3:59 PM
:wave:
TronLast Friday at 3:59 PM
Topics: Algo stuff - x22rc, Ownership token for Restricted Assets and Assets.
JerozLast Friday at 4:00 PM
@Milo is also here from coinrequest.
MiloLast Friday at 4:00 PM
Hi :thumbsup:
Pho3nix Monk3yLast Friday at 4:00 PM
welcome, @Milo
TronLast Friday at 4:00 PM
Great.
@Milo Was there PRs for Android and iOS?
MiloLast Friday at 4:01 PM
Yes, I've made a video. Give me a second I'll share it asap.
JerozLast Friday at 4:02 PM
I missed the iOS one.
MiloLast Friday at 4:02 PM
Well its 1 video, but meant for all.
JerozLast Friday at 4:02 PM
Ah, there's an issue but no pull request (yet?)
https://github.com/RavenProject/ravenwallet-ios/issues/115
[Dev-Happy] BlondfrogsLast Friday at 4:03 PM
nice @Milo
MiloLast Friday at 4:04 PM
Can it be that I have no video post rights?
JerozLast Friday at 4:05 PM
In discord?
MiloLast Friday at 4:05 PM
yes?
[Dev-Happy] BlondfrogsLast Friday at 4:05 PM
just a link?
JerozLast Friday at 4:05 PM
Standard version has a file limit afaik
Pho3nix Monk3yLast Friday at 4:05 PM
try now
gave permissions
MiloLast Friday at 4:05 PM
it's not published yet on Youtube, since I didn't knew when it would be published in the wallets
file too big. Hold on i'll put it on youtube and set it on private
LSJI07 - MBITLast Friday at 4:06 PM
no worries ipfs it...:yum:
Pho3nix Monk3yLast Friday at 4:06 PM
ok, just send link when you can
[Dev-Happy] BlondfrogsLast Friday at 4:07 PM
So guys. We released Ravencoin v2.4.0!
JerozLast Friday at 4:08 PM
If you like the code. Go update them nodes! :smiley:
[Dev-Happy] BlondfrogsLast Friday at 4:08 PM
We are recommending that you are upgrading to it. It fixes a couple bugs in the code base inherited from bitcoin!
MiloLast Friday at 4:08 PM
https://www.youtube.com/watch?v=t\_g7NpFXm6g&feature=youtu.be
sorry for the hold up
YouTube
Coin Request
Raven dev Gemiddeld
LSJI07 - MBITLast Friday at 4:09 PM
thanks short and sweet!!
KAwARLast Friday at 4:10 PM
Is coin request live on the android wallet?
TronLast Friday at 4:10 PM
Nice video.
It isn't in the Play Store yet.
Pho3nix Monk3yLast Friday at 4:10 PM
Well, this is the first time in a while where we have this many devs online. What questions do y'all have?
LSJI07 - MBITLast Friday at 4:11 PM
Algo questions?
Pho3nix Monk3yLast Friday at 4:11 PM
sure
KAwARLast Friday at 4:11 PM
KK
LSJI07 - MBITLast Friday at 4:12 PM
what are the proposed 22 algos in x22r? i could only find the original 16 plus 5 on x21.
TronLast Friday at 4:12 PM
Likely the 5 from x21 and find one more.
We need to make sure they're all similar in time profile.
liqdmetalLast Friday at 4:14 PM
should we bother fixing a asic-problem that we dont know exists for sure or not?
TronLast Friday at 4:14 PM
That's the 170 million dollar question.
[Dev-Happy] BlondfrogsLast Friday at 4:14 PM
I would prefer to be proactive not reactive.
imo
JerozLast Friday at 4:14 PM
same
LSJI07 - MBITLast Friday at 4:15 PM
RIPEMD160 is a golden oldie but not sure on hash speed compared to the others.
liqdmetalLast Friday at 4:15 PM
in my mind we should focus on the restricted messaging etc
Sevvy (y rvn pmp?)Last Friday at 4:15 PM
probably won't know if the action was needed until after you take the action
liqdmetalLast Friday at 4:15 PM
we are at risk of being interventionistas
acting under opacity
TronLast Friday at 4:15 PM
Needs to spit out at least 256 bit. Preferably 512 bit.
LSJI07 - MBITLast Friday at 4:15 PM
ok
TronLast Friday at 4:15 PM
If it isn't 512 bit, it'll cause some extra headache for the GPU mining software.
liqdmetalLast Friday at 4:16 PM
i seek to avoid iatrogenics
TronLast Friday at 4:16 PM
Similar to the early problems when all the algos except the first one were built for 64-bytes (512-bit) inputs.
Had to look that one up. TIL iatrogenics
JerozLast Friday at 4:17 PM
I have to google most of @liqdmetal's vocabulary :smile:
liqdmetalLast Friday at 4:17 PM
@Tron tldr: basically the unseen, unintended negative side effects of the asic "cure"
Sevvy (y rvn pmp?)Last Friday at 4:18 PM
10 dolla word
liqdmetalLast Friday at 4:19 PM
we need a really strong case to intervene in what has been created.
TronLast Friday at 4:19 PM
I agree. I'm less concerned with the technical risk than I am the potential split risk experienced multiple times by Monero.
Sevvy (y rvn pmp?)Last Friday at 4:20 PM
tron do you agree that forking the ravencoin chain presents unique risks compared to other chains that aren't hosting assets?
JerozLast Friday at 4:21 PM
Yes, if you fork, you need to figure out for each asset which one you want to support.
Sevvy (y rvn pmp?)Last Friday at 4:21 PM
yeah. and the asset issuer could have a chain preference
TronLast Friday at 4:22 PM
@Sevvy (y rvn pmp?) Sure. Although, I'd expect that the asset issuers will be honor the assets on the dominant chain. Bigger concern is the branding confusion of multiple forks. See Bitcoin, Bitcoin Cash, Bitcoin SV for an example. We know they're different, but do non-crypto folks?
Hans_SchmidtLast Friday at 4:22 PM
I thought that the take-away from the recently published analyses and discussions was that ASICs for RVN may be active, but if so then they are being not much more effective than GPUs.
Sevvy (y rvn pmp?)Last Friday at 4:22 PM
agreed on all accounts there tron
TronLast Friday at 4:23 PM
I'm not yet convinced ASICs are on the network.
KAwARLast Friday at 4:23 PM
It would be better to damage an asic builder by forking after they made major expenses. Creating for them the type of deficit that could be negated by just buying instead of mining. Asic existence should be 100 percent confirmed before fork.
liqdmetalLast Friday at 4:23 PM
170million dollar question is right.lol
TronLast Friday at 4:24 PM
I've had someone offer to connect me to the folks at Fusion Silicon.
Sevvy (y rvn pmp?)Last Friday at 4:25 PM
yes. and if they are active on the network they are not particularly good ASICs
which makes it a moot point probably
TronLast Friday at 4:26 PM
The difficult part of this problem is that by the time everyone agrees that ASICs are problematic on the network, then voting the option in is likely no longer an option.
Sevvy (y rvn pmp?)Last Friday at 4:26 PM
yes. part of me wonders if we would say "okay, the clock on the asic countdown is reset by this new algo. but now the race is on"
[Dev-Happy] BlondfrogsLast Friday at 4:26 PM
There are always risks when making a change that will fork the network. We want wait to long though, as tron said. It wont be a voting change. it will be a mandatory change at a block number.
Sevvy (y rvn pmp?)Last Friday at 4:26 PM
acknowledge the inevitable
MiloLast Friday at 4:27 PM
I had just a small question from my side. When do you think the android version would be published, and do you maybe have a time-frame for the others?
TronLast Friday at 4:27 PM
Quick poll. How would everyone here feel about a BIP9 option - separate from the new features that can be voted in?
KAwARLast Friday at 4:27 PM
Maybe voting should not be a strictly blockchain vote. A republic and a democratic voice?
[Dev-Happy] BlondfrogsLast Friday at 4:27 PM
@Milo We can try and get a beta out next week, and publish soon after that.
MiloLast Friday at 4:28 PM
@[Dev-Happy] Blondfrogs :thumbsup::slight_smile:
[Dev-Happy] BlondfrogsLast Friday at 4:28 PM
BIP9 preemptive vote. I like it.
TronLast Friday at 4:30 PM
The advantage to a BIP9 vote is that it puts the miners and mining pools at a clear majority before activation.
LSJI07 - MBITLast Friday at 4:30 PM
Centralisation is inevitable unless we decide to resist it. ASIC's are market based and know the risks and rewards possible. A key step in resisting is sending a message. An algo change to increase asic resistance is imho a strong message. A BIP9 vote now would also be an indicator of bad actors early....
TronLast Friday at 4:30 PM
The disadvantage is that it may not pass if the will isn't there.
LSJI07 - MBITLast Friday at 4:30 PM
Before assets are on main net and cause additional issues.
KAwARLast Friday at 4:31 PM
I am not schooled in coding to have an educated voice. I only understand social problems and how it affects the economy.
SpyderDevLast Friday at 4:31 PM
All are equal on RVN
TronLast Friday at 4:31 PM
It is primarily a social problem. The tech change is less risky and is easier than the social.
LSJI07 - MBITLast Friday at 4:32 PM
All can have a share....people who want more of a share however pay for the privilege and associated risks.
KAwARLast Friday at 4:33 PM
Assets and exchange listings need to be consistent and secure.
brutoidLast Friday at 4:36 PM
I'm still not entirely clear on what the overall goal to the algo change is? Is it just to brick the supposed ASICs (unknown 45%) which could still be FPGAs as seen from the recent block analysis posted in the nest. Is the goal to never let ASICs on? Is it to brick FPGAs ultimately. Are we making Raven strictly GPU only? I'm still unclear
LSJI07 - MBITLast Friday at 4:37 PM
What about the future issue of ASICs returning after a BIP9 fork "soon"? Are all following the WP as a community? i.e asic resistant or are we prepared to change that to asic resistant for early coin emission. Ideally we should plan for the future. Could the community make a statement that no future algo changes will be required to incentivise future public asic manufacturers?
Lol. Same question @brutoid
brutoidLast Friday at 4:37 PM
Haha it is
You mind-beamed me!
[Dev-Happy] BlondfrogsLast Friday at 4:38 PM
The is up to the community.
Currently, the feel seems like the community is anti asic forever.
The main issue is getting people to upgrade.
KAwARLast Friday at 4:38 PM
Clarity is important. Otherwise we are attacking windmills like Don Quixote.
brutoidLast Friday at 4:39 PM
I'm not getting the feeling of community ASIC hate if the last few weeks of discussion are anything to go by?
Hans_SchmidtLast Friday at 4:39 PM
A unilateral non-BIP9 change at a chosen block height is a serious thing, but anti-ASIC has been part of the RVN philosophy since the whitepaper and is therefore appropriate for that purpose.
[Dev-Happy] BlondfrogsLast Friday at 4:39 PM
We can use the latest release as an example. It was a non forking release, announced for 2 weeks. and only ~30% of the network has upgraded.
TronLast Friday at 4:39 PM
@Hans_Schmidt Well said.
liqdmetalLast Friday at 4:40 PM
I'm not concerned about a "asic hardware problem" so much as I believe it more likely what we are seeing is several big fish miners (perhaps a single really big fish). For now I recommend standing pat on x16r. In the future I can see an algo upgrade fork to keep the algo up to date. If we start fighting against dedicated x16r hashing machines designed and built to secure our network we are more likely to go down in flames. The custom SHA256 computers that make the bitcoin the most secure network in existence are a big part of that security. If some party has made an asic that performs up to par or better than FPGA or GPU on x16r, that is a positive for this network, a step towards SHA256 security levels. It is too bad the community is in the dark regarding their developments. Therefore I think the community has to clarify its stance towards algorithm changes. I prefer a policy that will encourage the development of mining software, bitstreams and hardware by as many parties as possible. The imminent threat of ALGO fork screws the incentive up for developers.
JerozLast Friday at 4:40 PM
@brutoid the vocal ones are lenient towards asics, but the outcome of the 600+ votes seemed pretty clear.
brutoidLast Friday at 4:40 PM
This is my confusion
TronLast Friday at 4:41 PM
More hashes are only better if the cost goes up proportionally. Machines that do more hashes for less $ doesn't secure the network more, and trends towards centralization.
JerozLast Friday at 4:41 PM
I would argue for polling ever so often as it certainly will evolve dynamically with the state of crypto over time.
TronLast Friday at 4:41 PM
Measure security in two dimensions. Distribution, and $/hash.
liqdmetalLast Friday at 4:41 PM
and volume of hash
traysiLast Friday at 4:42 PM
45% of the hashrate going to one party is unhealthy, and standing pat on x16r just keeps that 45% where it is.
TronLast Friday at 4:42 PM
Volume doesn't matter if the cost goes down. For example, lets say software shows up that does 1000x better than the software from yesterday, and everyone moves to it. That does not add security. Even if the "difficulty" and embedded hashes took 1000x more attempts to find.
brutoidLast Friday at 4:42 PM
My issue is defintely centralization of hash and not so much what machine is doing it. I mine with both GPU and FPGA. Of course, the FPGAs are not on raven
TJayLast Friday at 4:44 PM
easy solution is just to replace a few of 16 current hash functions, without messing with x21r or whatever new shit
TronLast Friday at 4:44 PM
How do folks here feel about allowing CPUs back in the game?
traysiLast Friday at 4:44 PM
Botnets is my concern with CPUs
brutoidLast Friday at 4:44 PM
Botnets is my concern
SpyderDevLast Friday at 4:44 PM
Yes please.
LSJI07 - MBITLast Friday at 4:44 PM
the poll votes seem not very security conscious. More of day miners chasing profits. I love them bless! Imho the future is bright for raven, however these issues if not sorted out now will bite hard long term when asset are on the chain and gpu miners are long gone.....
ZaabLast Friday at 4:45 PM
How has the testing of restricted assets been on the test net?
liqdmetalLast Friday at 4:45 PM
Agreed. I dont think x16r is obsolete like that yet however
[Dev-Happy] BlondfrogsLast Friday at 4:45 PM
@Zaab not enough testing at the moment.
HedgerLast Friday at 4:45 PM
Yes, how is the Testing going?
justinjjaLast Friday at 4:45 PM
Like randomX or how are cpus going to be back in the game?
TronLast Friday at 4:45 PM
@Zaab Just getting started at testing at the surface level (RPC calls), and fixing as we go.
ZaabLast Friday at 4:45 PM
And or any updates on the review of dividend code created by the community
Lokar -=Kai=-Last Friday at 4:45 PM
if the amount of hash the unknown pool has is fixed as standarderror indicated then waiting for the community of FPGAers to get onto raven might be advantageous if the fork doesn't hurt FPGAs.
ZaabLast Friday at 4:45 PM
Can't rememeber who was on it
SpyderDevLast Friday at 4:45 PM
@Zaab But we are working on it...
Lokar -=Kai=-Last Friday at 4:46 PM
more hash for votes
JerozLast Friday at 4:46 PM
@Maldon is, @Zaab
TronLast Friday at 4:46 PM
@Zaab There are unit tests and functional tests already, but we'd like more.
[Dev-Happy] BlondfrogsLast Friday at 4:46 PM
@Zaab Dividend code is currently adding test cases for better security. Should have more update on that next meeting
KAwARLast Friday at 4:46 PM
Absolute democracy seems to resemble anarchy or at least civil war. In EVE online they have a type of community voice that get voted in by the community.
ZaabLast Friday at 4:46 PM
No worries was just curious if it was going as planned or significant issues were being found
Obviously some hiccups are expected
More testing is always better!
TronLast Friday at 4:47 PM
Who in here is up for a good civil war? :wink:
ZaabLast Friday at 4:47 PM
Tron v Bruce. Celebrity fight night with proceeds to go to the RVN dev fund
SpyderDevLast Friday at 4:48 PM
Cagefight or mudpit?
JerozLast Friday at 4:48 PM
talking about dev funds..... :wink:
Pho3nix Monk3yLast Friday at 4:49 PM
and there goes the conversation....
KAwARLast Friday at 4:49 PM
I am trying to be serious...
ZaabLast Friday at 4:49 PM
Sorry back to the ascii topic!
traysiLast Friday at 4:49 PM
@Tron What do we need in order to make progress toward a decision on the algo? Is there a plan or a roadmap of sorts to get us some certainty about what we're going to do?
LSJI07 - MBITLast Friday at 4:50 PM
Could we have 3 no BIP9 votes? No1 Friendly to asics, retain status quo. No2 change to x17r minimal changes etc, with no additional future PoW/algo upgrades. No3. Full Asic resistance x22r and see what happens...
:thonk~1:
Sounds messy....
TronLast Friday at 4:51 PM
Right now we're in research mode. We're building CNv4 so we can run some metrics. If that goes well, we can put together x22rc and see how it performs. It will likely gore everyone's ox. CPUs can play, GPUs work, but aren't dominant. ASICs VERY difficult, and FPGAs will have a tough time.
ZaabLast Friday at 4:51 PM
Yeah i feel like the results would be unreliable
TronLast Friday at 4:51 PM
Is this good, or do we lose everyone's vote?
PlayHardLast Friday at 4:52 PM
Fpga will be dead
Lokar -=Kai=-Last Friday at 4:52 PM
why isn;t a simple XOR or something on the table?
ZaabLast Friday at 4:52 PM
The multiple bip9 that is
Lokar -=Kai=-Last Friday at 4:52 PM
something asic breaking but doesn't greatly complicate ongoing efforts for FPGA being my point.
justinjjaLast Friday at 4:52 PM
How are you going to vote for x22rc?
Because if by hashrate that wouldn't pass.
traysiLast Friday at 4:52 PM
Personally I like the idea of x22rc but I'd want to investigate the botnet threat if CPUs are allowed back in.
TronLast Friday at 4:52 PM
XOR is on the table, and was listed in my Medium post. But, the social risk of chain split remains, for very little gain.
traysiLast Friday at 4:53 PM
@Lokar -=Kai=- A small change means that whoever has 45% can probably quickly adapt.
LSJI07 - MBITLast Friday at 4:53 PM
Research sounds good. x22rc could be reduce to x22r for simplicity...
TronLast Friday at 4:53 PM
x22r is a viable option. No CNv4.
LSJI07 - MBITLast Friday at 4:53 PM
Don't know how much time we have to play with though...
Lokar -=Kai=-Last Friday at 4:53 PM
if they have FPGAs yes if they have ASIC then not so much, but I guess that gets to the point, what exactly are we trying to remove from the network?
PlayHardLast Friday at 4:54 PM
Guys my name is Arsen and we designed x16r fpga on bcus. Just about to release it to the public. I am buzzdaves partner.
Cryptonight
Will kill us
But agreed
Asic is possible on x16r
And you dont need 256 core
Cores
traysiLast Friday at 4:55 PM
Hi Arsen. Are you saying CN will kill "us" meaning RVN, or meaning FPGA?
JerozLast Friday at 4:55 PM
This is what im afraid of ^ an algo change killing FPGA as I have the feeling there is a big fpga community working on this
PlayHardLast Friday at 4:55 PM
Fpgas ))
whitefire990Last Friday at 4:55 PM
I am also about to release X16R for CVP13 + BCU1525 FPGA's. I'm open to algo changes but I really don't believe in CPU mining because of botnets. Any CNv4 shifts 100% to CPU mining, even if it is only 1 of the 22 functions.
Lokar -=Kai=-Last Friday at 4:55 PM
namely FPGAs that aren;t memory equipped
like fast mem
not ddr
PlayHardLast Friday at 4:55 PM
Hbm non hbm
Cryptonight
whitefire990Last Friday at 4:56 PM
Right now with both Buzzdave/Altered Silicon and myself (Zetheron) about to release X16R for FPGA's, then the 45% miner's share will decrease to 39% or less.
PlayHardLast Friday at 4:56 PM
Will be dead for fpga
LSJI07 - MBITLast Friday at 4:56 PM
sound so x22r is fpga "friendly" ... more so than asic anyway...
PlayHardLast Friday at 4:56 PM
But a change must be planned
X16r is no way possible to avoid asics
TJayLast Friday at 4:56 PM
@LSJI07 - MBIT I would say less friendly...
whitefire990Last Friday at 4:57 PM
As I mentioned in thenest discussion, asic resistance increases with the square of the number of functions, so X21R is more asic resistant than X16R, but both are pretty resistant
PlayHardLast Friday at 4:58 PM
Yeah more algos make it heavier on ASIC
DirkDiggler (Citadel Architect)Last Friday at 4:58 PM
My interpretation of the whitepaper was that we used x16r as it was brand new (thus ASIC resistant), and that was to ensure a fair launch... We've launched... I don't like the idea of constantly forking to avoid the inevitable ASICs.
x16r was a great "experiment" before we had any exchange listings... that ship has sailed though... not sure about all these x22rs lmnop changes
KAwARLast Friday at 5:00 PM
I believe that it is easier to change the direction of a bicycle than an oil tanker. We feel more like a train. We should lay out new tracks and test on them and find benefits that are acceptable to everyone except train robbers. Then open the new train station with no contentious feelings except a silently disgruntled minority group. ???
Hans_SchmidtLast Friday at 5:01 PM
The most productive action the community can do now re ASICs is to voice support for the devs to make a non-BIP9 change at a chosen block height if/when the need is clear. That removes the pressure to act rashly to avoid voting problems.
LSJI07 - MBITLast Friday at 5:01 PM
Thats why im proposing to fork at least once to a more asic resistant algo (but FPGA "friendly/possible"), with the proviso ideally that no more PoW algo forks are require to provide future ASICs some opportunity to innovate with silicon and efficiency.
TJayLast Friday at 5:01 PM
folks should take into account, that high end FPGAs like BCU1525 on x16r can't beat even previous gen GPUs (Pascal) in terms of hash cost. so they aren't a threat to miners community
PlayHardLast Friday at 5:02 PM
A proper change
Requires proper research
eyz (Silence)Last Friday at 5:02 PM
Just so I'm clear here, we are trying to boot ASICS, don't want CPUs because of Botnets, and are GPU and FPGA friendly right?
PlayHardLast Friday at 5:02 PM
It is not a quick one day process
eyz (Silence)Last Friday at 5:02 PM
If there is a bip9 vote there needs to be a clear explanation as I feel most in the community don't understand exactly what we are trying to fix
TronLast Friday at 5:03 PM
@Hans_Schmidt I like that route. It has some game theoretics. It gives time for miners to adapt. It is only used if needed. It reduces the likelihood of ASICs dominating the network, or even being built.
[Dev-Happy] BlondfrogsLast Friday at 5:03 PM
Hey guys. great convo. We are of course looking to do the best thing for the community and miner. We are going to be signing off here though.
justinjjaLast Friday at 5:03 PM
TJay that comes down to power cost.
If your paying 4c/kw gpus all the way.
But if your a home miner in europe an fpga is your only chance
LSJI07 - MBITLast Friday at 5:03 PM
@Hans_Schmidt How do we decide the block limit and when sufficient evidence is available? I would say we have had much compelling information to date...
[Dev-Happy] BlondfrogsLast Friday at 5:03 PM
Thanks for participating. and keep up the good work :smiley:
Have a good weekend.
CAWWWW
TronLast Friday at 5:03 PM
I haven't seen any compelling evidence of ASICs - yet.
Pho3nix Monk3yLast Friday at 5:03 PM
:v:
JerozLast Friday at 5:04 PM
I suggest to continue discussion in #development and #thenest :smiley:
thanks all!
TronLast Friday at 5:04 PM
Cheers everyone!
KAwARLast Friday at 5:04 PM
Agree with Hans.
DirkDiggler (Citadel Architect)Last Friday at 5:04 PM
thanks Tron
Pho3nix Monk3yLast Friday at 5:04 PM
Ending here. continue in Nest if wanted
DirkDiggler (Citadel Architect)Last Friday at 5:04 PM
I am waiting for compelling evidence myself.
submitted by mrderrik to Ravencoin [link] [comments]

Technical Cryptonight Discussion: What about low-latency RAM (RLDRAM 3, QDR-IV, or HMC) + ASICs?

The Cryptonight algorithm is described as ASIC resistant, in particular because of one feature:
A megabyte of internal memory is almost unacceptable for the modern ASICs. 
EDIT: Each instance of Cryptonight requires 2MB of RAM. Therefore, any Cryptonight multi-processor is required to have 2MB per instance. Since CPUs are incredibly well loaded with RAM (ie: 32MB L3 on Threadripper, 16 L3 on Ryzen, and plenty of L2+L3 on Skylake Servers), it seems unlikely that ASICs would be able to compete well vs CPUs.
In fact, a large number of people seem to be incredibly confident in Cryptonight's ASIC resistance. And indeed, anyone who knows how standard DDR4 works knows that DDR4 is unacceptable for Cryptonight. GDDR5 similarly doesn't look like a very good technology for Cryptonight, focusing on high-bandwidth instead of latency.
Which suggests only an ASIC RAM would be able to handle the 2MB that Cryptonight uses. Solid argument, but it seems to be missing a critical point of analysis from my eyes.
What about "exotic" RAM, like RLDRAM3 ?? Or even QDR-IV?

QDR-IV SRAM

QDR-IV SRAM is absurdly expensive. However, its a good example of "exotic RAM" that is available on the marketplace. I'm focusing on it however because QDR-IV is really simple to describe.
QDR-IV costs roughly $290 for 16Mbit x 18 bits. It is true Static-RAM. 18-bits are for 8-bits per byte + 1 parity bit, because QDR-IV is usually designed for high-speed routers.
QDR-IV has none of the speed or latency issues with DDR4 RAM. There are no "banks", there are no "refreshes", there are no "obliterate the data as you load into sense amplifiers". There's no "auto-charge" as you load the data from the sense-amps back into the capacitors.
Anything that could have caused latency issues is gone. QDR-IV is about as fast as you can get latency-wise. Every clock cycle, you specify an address, and QDR-IV will generate a response every clock cycle. In fact, QDR means "quad data rate" as the SRAM generates 2-reads and 2-writes per clock cycle. There is a slight amount of latency: 8-clock cycles for reads (7.5nanoseconds), and 5-clock cycles for writes (4.6nanoseconds). For those keeping track at home: AMD Zen's L3 cache has a latency of 40 clocks: aka 10nanoseconds at 4GHz
Basically, QDR-IV BEATS the L3 latency of modern CPUs. And we haven't even begun to talk software or ASIC optimizations yet.

CPU inefficiencies for Cryptonight

Now, if that weren't bad enough... CPUs have a few problems with the Cryptonight algorithm.
  1. AMD Zen and Intel Skylake CPUs transfer from L3 -> L2 -> L1 cache. Each of these transfers are in 64-byte chunks. Cryptonight only uses 16 of these bytes. This means that 75% of L3 cache bandwidth is wasted on 48-bytes that would never be used per inner-loop of Cryptonight. An ASIC would transfer only 16-bytes at a time, instantly increasing the RAM's speed by 4-fold.
  2. AES-NI instructions on Ryzen / Threadripper can only be done one-per-core. This means a 16-core Threadripper can at most perform 16 AES encryptions per clock tick. An ASIC can perform as many as you'd like, up to the speed of the RAM.
  3. CPUs waste a ton of energy: there's L1 and L2 caches which do NOTHING in Cryptonight. There are floating-point units, memory controllers, and more. An ASIC which strips things out to only the bare necessities (basically: AES for Cryptonight core) would be way more power efficient, even at ancient 65nm or 90nm designs.

Ideal RAM access pattern

For all yall who are used to DDR4, here's a special trick with QDR-IV or RLDRAM. You can pipeline accesses in QDR-IV or RLDRAM. What does this mean?
First, it should be noted that Cryptonight has the following RAM access pattern:
QDR-IV and RLDRAM3 still have latency involved. Assuming 8-clocks of latency, the naive access pattern would be:
  1. Read
  2. Stall
  3. Stall
  4. Stall
  5. Stall
  6. Stall
  7. Stall
  8. Stall
  9. Stall
  10. Write
  11. Stall
  12. Stall
  13. Stall
  14. Stall
  15. Stall
  16. Stall
  17. Stall
  18. Stall
  19. Read #2
  20. Stall
  21. Stall
  22. Stall
  23. Stall
  24. Stall
  25. Stall
  26. Stall
  27. Stall
  28. Write #2
  29. Stall
  30. Stall
  31. Stall
  32. Stall
  33. Stall
  34. Stall
  35. Stall
  36. Stall
This isn't very efficient: the RAM sits around waiting. Even with "latency reduced" RAM, you can see that the RAM still isn't doing very much. In fact, this is why people thought Cryptonight was safe against ASICs.
But what if we instead ran four instances in parallel? That way, there is always data flowing.
  1. Cryptonight #1 Read
  2. Cryptonight #2 Read
  3. Cryptonight #3 Read
  4. Cryptonight #4 Read
  5. Stall
  6. Stall
  7. Stall
  8. Stall
  9. Stall
  10. Cryptonight #1 Write
  11. Cryptonight #2 Write
  12. Cryptonight #3 Write
  13. Cryptonight #4 Write
  14. Stall
  15. Stall
  16. Stall
  17. Stall
  18. Stall
  19. Cryptonight #1 Read #2
  20. Cryptonight #2 Read #2
  21. Cryptonight #3 Read #2
  22. Cryptonight #4 Read #2
  23. Stall
  24. Stall
  25. Stall
  26. Stall
  27. Stall
  28. Cryptonight #1 Write #2
  29. Cryptonight #2 Write #2
  30. Cryptonight #3 Write #2
  31. Cryptonight #4 Write #2
  32. Stall
  33. Stall
  34. Stall
  35. Stall
  36. Stall
Notice: we're doing 4x the Cryptonight in the same amount of time. Now imagine if the stalls were COMPLETELY gone. DDR4 CANNOT do this. And that's why most people thought ASICs were impossible for Cryptonight.
Unfortunately, RLDRAM3 and QDR-IV can accomplish this kind of pipelining. In fact, that's what they were designed for.

RLDRAM3

As good as QDR-IV RAM is, its way too expensive. RLDRAM3 is almost as fast, but is way more complicated to use and describe. Due to the lower cost of RLDRAM3 however, I'd assume any ASIC for CryptoNight would use RLDRAM3 instead of the simpler QDR-IV. RLDRAM3 32Mbit x36 bits costs $180 at quantities == 1, and would support up to 64-Parallel Cryptonight instances (In contrast, a $800 AMD 1950x Threadripper supports 16 at the best).
Such a design would basically operate at the maximum speed of RLDRAM3. In the case of x36-bit bus and 2133MT/s, we're talking about 2133 / (Burst Length4 x 4 read/writes x 524288 inner loop) == 254 Full Cryptonight Hashes per Second.
254 Hashes per second sounds low, and it is. But we're talking about literally a two-chip design here. 1-chip for RAM, 1-chip for the ASIC/AES stuff. Such a design would consume no more than 5 Watts.
If you were to replicate the ~5W design 60-times, you'd get 15240 Hash/second at 300 Watts.

RLDRAM2

Depending on cost calculations, going cheaper and "making more" might be a better idea. RLDRAM2 is widely available at only $32 per chip at 800 MT/s.
Such a design would theoretically support 800 / 4x4x524288 == 95 Cryptonight Hashes per second.
The scary part: The RLDRAM2 chip there only uses 1W of power. Together, you get 5 Watts again as a reasonable power-estimate. x60 would be 5700 Hashes/second at 300 Watts.
Here's Micron's whitepaper on RLDRAM2: https://www.micron.com/~/media/documents/products/technical-note/dram/tn4902.pdf . RLDRAM3 is the same but denser, faster, and more power efficient.

Hybrid Cube Memory

Hybrid Cube Memory is "stacked RAM" designed for low latency. As far as I can tell, Hybrid Cube memory allows an insane amount of parallelism and pipelining. It'd be the future of an ASIC Cryptonight design. The existence of Hybrid Cube Memory is more about "Generation 2" or later. In effect, it demonstrates that future designs can be lower-power and give higher-speed.

Realistic ASIC Sketch: RLDRAM3 + Parallel Processing

The overall board design would be the ASIC, which would be a simple pipelined AES ASIC that talks with RLDRAM3 ($180) or RLDRAM2 ($30).
Its hard for me to estimate an ASIC's cost without the right tools or design. But a multi-project wafer like MOSIS offers "cheap" access to 14nm and 22nm nodes. Rumor is that this is roughly $100k per run for ~40 dies, suitable for research-and-development. Mass production would require further investments, but mass production at the ~65nm node is rumored to be in the single-digit $$millions or maybe even just 6-figures or so.
So realistically speaking: it'd take ~$10 Million investment + a talented engineer (or team of engineers) who are familiar with RLDRAM3, PCIe 3.0, ASIC design, AES, and Cryptonight to build an ASIC.

TL;DR:

submitted by dragontamer5788 to Monero [link] [comments]

The Future of Computing (Heterogeneous Architecture – CPUs ... Mining Cryptocurrency PROFITABLE RIGHT NOW?! GPU  CPU ... T4D #84 - Pt 2 Bitcoin Mining, BFL ASIC vs FPGA vs GPU vs CPU Is Crypto Mining Worth it? CPU, GPU, and ASIC Mining ... Are YOU Expanding In 2020? GPU, ASIC or FPGA Mining?

Lbry algorithm – LBRY Credits (LBC), coins / miners (CPU, GPU, ASIC, FPGA) coinguides Follow on Twitter September 29, 2018. 0 1,272 . Facebook Twitter LinkedIn Pinterest Reddit. Most Proof of Work (PoW) algorithms including SHA-256 that is used by Bitcoin was only CPU mineable during its early days. Then GPU miners came and made CPU mining less viable. Later GPUs was completely replaced by ... Zu den einzigartigen Funktionen von BFGMiner gehören das Mining mit freiem Mesa / LLVM OpenCL, die Neuanordnung von ADL-Geräten über PCI-Bus-ID, integrierte Übertaktung und Lüftersteuerung, modulare ASIC Miner-Software, FPGA-, GPU- und CPU-Mining-Software in C, plattformübergreifend für Linux, Mac und Windows einschließlich Unterstützung für OpenWrt-fähige Router. For a given mining algorithm, there is definitely a technology progression. We can look back on the technology that was used to mine Bitcoin and see how it first started off as Central Processing Unit (CPU) mining, then it moved to Graphical Processing Unit (GPU) mining, then Field Programmable Gate Array (FPGA), and then Application Specific Integrated Circuit (ASIC). ASIC, GPU, and CPU also need to be considered as an important part of it. ASIC is the fastest as compared to GPU and CPU. ASIC is the most efficient way to mine bitcoin hardware. If you have large equipment budget and sticking to one coin for a long time, then ASIC is the best option for you but due to its cost and high maintenance GPU is taking place over it. So, if you want flexibility from ... BFGMiner is a modular ASIC, FPGA, GPU and CPU miner written in C, cross platform for Linux, Mac, and Windows including support for OpenWrt-capable routers.

[index] [26229] [33089] [35516] [7051] [33382] [14760] [8832] [38634] [47828] [16538]

The Future of Computing (Heterogeneous Architecture – CPUs ...

Going over the Cost, Hashrates, and ROI for GPUs Vs ASICs Vs FPGAs Mining. Update on 01/23/2019. Links below. WhatToMine --- https://whattomine.com/ AsicMine... Which is more profitable between GPU and Asic Mining in 2019? Both GPU rigs and Asic miners are heavily overpriced due to the fact that so many people want to get into Cryptocurrency mining. Is Cryptocurrency mining profitable right now? Is Bitcoin mining profitable Is Ethereum mining profitable? GPU vs CPU vs FPGA vs ASIC mining profitability? L... In this video I take a look at Bitcoin mining hardware. I compare the performance and power usage between BFL SC ASIC vs FPGA vs GPU (Nvideo GTX 560 Ti and AMD ATI Radeon HD 8950) vs CPU (Intel ... FPGA miners used much less power than CPU's or GPU's and made concentrated mining farms possible for the first time. Today's modern and best bitcoin mining hardware

#